Worcester Polytechnic Institute Digital WPI

Masters Theses (All Theses, All Years)

Electronic Theses and Dissertations

2002-04-30

Optimization of a Technique for Phosphorescence Lifetime Imaging of Oxygen Tension in the Mouse Retina

Amanda C. Kight *Worcester Polytechnic Institute*

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation

Kight, Amanda C., "Optimization of a Technique for Phosphorescence Lifetime Imaging of Oxygen Tension in the Mouse Retina" (2002). Masters Theses (All Theses, All Years). 537. https://digitalcommons.wpi.edu/etd-theses/537

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

OPTIMIZATION OF A TECHNIQUE FOR PHOSPHORESCENCE LIFETIME IMAGING OF OXYGEN TENSION IN THE MOUSE RETINA

by

Amanda C. Kight

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Biomedical Engineering

by

April 2002

APPROVED

Koss D. Shonat, Ph.D., Major Advisor

Karl G. Helmer, Ph.D., Committee Member

<u>Chabeth 7. Rydn</u> Elizabeth Ryder, Ph.D., Committee Member

ACKNOWLEDGEMENTS

Funding for this project was provided, in part, by a pilot an feasibility grant from the Diabetes and Endocrinology Resource Center (DERC) at the University of Massachusetts Medical School, Worcester, MA, and by a biomedical engineering research grant from the Whitaker Foundation, Rosslyn VA.

I would like to extend my thanks to my family and friends for their support throughout my academic career, and to:

Kevin Hawkins and Daniel Traviglia, for their help with hardware and software issues, respectively, and for keeping the lab fun;

Karl Helmer and Elizabeth Ryder, my thesis committee, for taking interest in this project and providing constructive criticism;

Ross Shonat, my advisor and role model, for having tremendous faith in me and continuously encouraging me to reach my fullest potential.

ABSTRACT

Retinal hypoxia and inadequate oxygen delivery have been implicated as causal for the development of several eye diseases, including diabetic retinopathy, glaucoma, and retinopathy of prematurity. The imaging of oxygen tension in the retina, generated from a measure of the phosphorescence lifetimes of bolus-injected palladium-porphyrin probes, has been used successfully to study retinal oxygen dynamics in numerous animal models. However, the specific parameters for applying this technique in the mouse have not been thoroughly investigated. The goals of this project were to calibrate a newlyconstructed phosphorescence lifetime imaging instrument and data analysis software against known oxygen concentrations, to determine specific parameters for probe excitation and image collection and analysis in the mouse eye, and to assess any damage caused to the eye by the technique using histological analysis. An *in vitro* system was developed for calibration of the probe and for estimation of power of excitation light and camera settings necessary to produce acceptable oxygen maps. In vivo experiments were then performed, and plots indicating camera settings necessary for producing varying qualities of oxygen maps were constructed. Trypsin digestion of retinal tissue was used in an attempt to assess any damage to experimental subjects, but this histological technique was deemed inadequate for analyzing the capillary structures of the mouse eye. Alternatively, damage was assessed using the instrument itself to calculate changes in oxygen tension during the experimental process. The results of this work will allow the phosphorescence lifetime imaging system to be used in the mouse to study how changes in retinal oxygen tension correlate with the progression of eye diseases where oxygen is implicated, including diabetic retinopathy.

Acknowledgementsii		
Abstractiii		
Table of Contentsiv		
List of Tables and Figures	vi	
1. Introduction	1	
2. Background	3	
Oxygen Delivery and Consumption in the Retina	3	
Oxygen Measurements in the Eye	7	
Imaging and Microscopy	9	
Phosphorescence Lifetime Imaging of Oxygen Tension	10	
3. Methods	21	
Data Acquisition and Analysis	21	
In Vitro Experiments	21	
In Vivo Oxygen Mapping	24	
Histology	27	
4. Results	29	
Phosphorescence Intensity		
In Vitro Tests	31	
In Vivo Tests	34	
Histology	41	
5. Discussion	45	
Significance of Results	45	
Future Work	46	
Conclusions		
References	50	

Appendix A: Pd-Meso-Tetra (4-carboxyphenyl) Porphrine Probe Solution	56
Appendix B: "Retina" Program	57
Appendix C: Procedure for Trypsin Digestion of the Retina	61
Appendix D: Procedure for Hematoxylin Staining of Trypsin Digests	64
Appendix E: Data Tables and Graphs	65
Appendix F: ARVO Abstract	113
Appendix G: Sigma Xi MS Research Award Executive Summary	.114

LIST OF TABLES AND FIGURES

Table		Page
3.1	Gain settings and exposure times used for in vivo experiments	26
4.1	Sample data for <i>in vitro</i> image set	29
4.2	Sample data for <i>in vivo</i> image set	29
4.3	Sample raw data for in vivo experiments	36
4.4	Summary of delta PO ₂ mean and standard deviation for Mice 1a, 3a, and 4a	40

Figure

2.1	Cutaway view of retinal layers	4
2.2	The layered structure of the retina	5
2.3	Optical train of a microscope	9
2.4	The phosphorescence lifetime imaging system	11
2.5	Energy diagram for fluorescent and phosphorescent molecules	13
2.6	Quenching of the phosphorescent probe by oxygen	15
2.7	Maps of the mouse retina	18
2.8	Schematic diagram of the phosphorescence lifetime imaging system	19
3.1	In vitro system	22
3.2	Zero-oxygen in vitro testing system	24
3.3	Stereotaxic head holder	25
4.1	Sample intensity images and intensity vs. phase delay graph for <i>in vitro</i> experiments	30
4.2	Sample intensity images and intensity vs. phase delay graph for in vivo	31
	experiments	
4.3	Sample PO ₂ and R ² maps for <i>in vitro</i> experiments	32
4.4	In vitro calibration curve	33
4.5	Average R ² value versus SNR for gain settings 10, 100, and 255	33
4.6	Sample PO ₂ and R ² maps for <i>in vivo</i> experiments	35
4.7	Sample graphs of in vivo data, taken from Mouse 7a vein	37
4.8	Map R ² value versus SNR in vein, artery, and tissue for all animals tested	39

4.9 Delta PO ₂ versus image number for Mouse 4a	
4.10 Trypsin digestion slides of control and damaged mouse retinas	
4.11 Trypsin digestion of the mouse retina, viewed at 4x, 10x, and 20x	
magnification	
B.1 "Retina" front panel	57
B.2 "Show Intensity Images" screen	
B.3 "Graph Region" screen	59
B.4 "Calculate Maps" screen	60

1. INTRODUCTION

Retinal hypoxia has been implicated as a causal factor in the development of numerous eye diseases, including diabetic retinopathy, retinopathy of prematurity, and glaucoma. Recently, a phosphorescence lifetime imaging technique has been developed for measuring oxygen tension in the eye that has important implications for the study retinal oxygenation in mouse models of these serious diseases. Optimizing this phosphorescence lifetime imaging technique for use in the mouse eye will allow for more complete, accurate, and useful studies of the oxygen tension in normal and diseased mouse retinas.

Phosphorescence lifetime imaging has received considerable attention in the literature as a method for measuring oxygen tension *in vivo* [Shonat, 1997]. This technique involves the injection of a phosphorescent probe into animal vasculature and the subsequent excitation of this probe with light. From its excited state, the probe phosphoresces and can be quenched by oxygen. The degree of quenching and, hence, the concentration of oxygen, can be determined by measuring the phosphorescence lifetime. When the excitation light is modulated sinusoidally, the phosphorescence is emitted at the same frequency, but with a phase delay resulting from the finite lifetime of the phosphorescence. Using a phase-sensitive detector, such as a camera's image intensifier, phase and, therefore, lifetime, can be determined. Using the intensity of phosphorescence reaching the camera at a series of intensifier phase delay values, phase shift maps can be created. When known equations are applied to each pixel in these maps, the phase shift maps can be converted to oxygen tension (PO₂) maps.

Despite the recognition of this technique in the literature [Wilson, 1991 and Shonat, 1992, 1997, 1998], the specific parameters for data collection and analysis in the mouse eye have not been thoroughly investigated. The goal of this project was to examine these parameters in an effort to optimize the phosphorescence lifetime imaging technique for measuring oxygen tension in the mouse retina. The specific aims for achieving the goal of optimization were:

- 1. To calibrate the phosphorescence lifetime imaging system *in vitro* using a probe solution equilibrated at different oxygen concentrations.
- 2. To determine appropriate parameters for optimal excitation of the probe, including wavelength, bandwidth, energy, and power of the excitation light.
- To determine optimal procedures for image collection and analysis, including camera exposure time, intensifier gain, and number of images necessary for fitting.
- 4. To examine, using histological techniques, any potential microvascular damage induced by this measurement.

2. BACKGROUND

Phosphorescence lifetime imaging is the marriage of techniques in physiology, imaging, and microscopy. Understanding its application to the normal or diseased eye requires study of eye structure, retinal oxygenation, and the basics of imaging and microscopy. The following sections provide background in these areas, as well as an overview of phosphorescence lifetime imaging in general.

Oxygen Delivery and Consumption in the Retina

The eye is a unique organ requiring a complex vasculature to deliver adequate oxygen for visual and neural function, while maintaining visual clarity and transparency. Oxygenation in the various parts of the eye, including the retina, reflects the distinctive demands of ocular vascularization.

The retina is located on the back surface of the eye, behind the vitreous. All vertebrate retinas have a layered structure [Dowling, 1987 and Moses, 1987] (Figures 2.1 and 2.2). Two synaptic layers, known as the outer and inner plexiform layers, are stacked between three cellular layers, termed the outer and inner nuclear layer and the ganglion cell layer [Dowling, 1987]. These layers are capped by the pigmented epithelial layer and the inner limiting membrane. The outer nuclear layer contains the cell bodies of the photoreceptors, which are sensitive to light and initiate all visual responses in the retina and the brain [Dowling, 1987 and Moses, 1987]. The inner nuclear layer contains the neuron and glial cell bodies (not shown in the figure), while the ganglion cell layer contains the ganglion cell bodies. The outer plexiform layer is the site of the synaptic reactions of photoreceptors, horizontal cells, and bipolar neurons. The inner plexiform

layer houses the synaptic interactions involving bipolar neurons, amacrine cells, and ganglion cells [Moses, 1987].

Figure 2.1-Cutaway view of retinal layers. Light enters from the front of the retina and travels through the layers to the photoreceptors. Visual information travels from the photoreceptors to the bipolar cells and the ganglion cells before traveling down the fibers of the optic nerve to the brain [Sherwood, 2001].

When light enters the eye, it passes through the retina and is captured by the photoreceptors and the outer segments of the pigment-containing cells in the pigment epithelium [Dowling, 1987]. Visual processing then occurs in the opposite direction, passing through the retina to the optic nerve at the front of the retina. The fibers of the optic nerve then transmit the visual signal to the brain.

The retina requires adequate amounts of oxygen for normal function

[Linsenmeier, 1989 and Yu, 2001]. The photoreceptors responsible for collecting light

and converting it to an electrical signal contain a large concentration of mitochondria,

Figure 2.2—The layered structure of the retina [Dowling, 1987].

necessary for producing energy to carry out this function. This large production of energy makes the retina one of the highest oxygen consuming tissues in the body [Yu, 2001]. However, the necessity of transparency in the retina limits extensive vascularization, and the retina has only a simple vasculature radiating from the optic nerve; [Yu, 2001]. This constraint dictates that the extensive oxygen requirements of the retina be met in part by adjacent vasculatures. The avascular parts of the retina, including the photoreceptors and the outer regions, are preferentially supplied with oxygen by the choroidal vasculature, which lies behind the retina [Delori, 1988 and Yu, 2001] (Figure 2.1). This vasculature is characterized by a low vascular resistance and high blood flow rate, with an average PO₂ very close to arterial PO₂ [Linsenmeier, 1989 and 2000] and significantly greater than the PO₂ in the retinal vasculature.

Retinal oxygen consumption is heterogeneous through the different layers of the tissue [Yu, 1999]. Oxygen tension is relatively uniform in the inner retina, reaches a minimum within the outer retina, and rises to a maximum at the tips of the outer segments near the choroid [Linsenmeier, 1986] (Figure 2.2). In regards to oxygen consumption modeling, the avascular outer retina can be broken into three layers: layer 1, consisting of the pigment epithelium and outer segments of the photoreceptors; layer 2, consisting of the inner segments of the photoreceptors; and layer 3, consisting of the outer plexiform layer. Of these three layers, only layer 2 consumes oxygen, as oxygen-dependent mitochondria are most abundant in the inner segments of the photoreceptors [Linsenmeier, 1986 and 2000]. The oxygen consumption of the other two layers is modeled most accurately with values near zero.

The oxygen demands of the inner retina are supplied directly by the retinal circulation. The retinal circulation differs from the choroidal circulation in terms of flow rate and control mechanisms [Linsenmeier, 1986]. There exist two capillary beds in the retina, the outer bed being more venous in nature than the inner layer [Alder, 1983]. The oxygen tension is relatively low between these two beds [Yu, 1999]. The retinal circulation has no autonomic innervation, relying totally on local control mechanisms to regulate distribution of blood flow [Alder, 1997]. The capillary system in the retina is sparse to allow for minimal optical interference and, as such, has a large arteriovenous oxygen difference [Alder, 1997].

The high oxygen demands of the retina, along with its delicate supply mechanisms, make it more vulnerable to vascular deficiencies than most other organs [Yu, 2001]. Neither the retinal nor the choroidal circulation is capable of adequately

compensating for impairment to the other [Alder, 1983]. Thus, damage to either the retinal or choroidal vasculature can be devastating, often resulting in complete loss of vision [Yu, 2001]. Problems with retinal oxygen supply are often treated with panretinal photocoagulation. This technique, in which a laser is applied to broad areas of the retina, destroys photoreceptors in the peripheral retina and is thought to increase the oxygen flux from the choroid to the inner retina and thereby compensate for a decrease in retinal circulation. Less oxygen is consumed in the partially burned outer retina, allowing for increased oxygen supplied to the inner retina [Stefansson, 1981].

Oxygen Measurements in the Eye

Many different techniques have been developed for measuring oxygen tension in the eye. However, most of these techniques have significant limitations, particularly in applications to the small mouse eye.

Oxygen-sensitive microelectrodes have been used extensively in animal models for generating oxygen profiles in the eye. While their use has offered many insights into ocular oxygenation, this method is highly invasive; the insertion of the electrode into the eye and the subsequent withdrawal of the electrode with oxygen tension measurements taken at specified points can cause significant trauma. Each introduction of the electrode offers only a one-dimensional oxygen profile for the region of insertion. Electrodes must also be recalibrated following each profile measurement. The invasive nature of the microelectrode prevents its ready application in clinical settings (due to the necessity of surgical intervention), or to mice (due to the small size of the eye) [Ito, 2001].

Retinal vessel oximetry has been used in humans to determine oxygen saturation of blood [Delori, 1988]. This technique is based on the fact that the light absorbing properties of blood (absorbance spectrum) depends on the amount of oxygen bound to hemoglobin. While the technique may be used to accurately determine oxygen tensions under ideal conditions, measurements are adversely affected by a number of factors including eye pigmentation, turbidity of ocular media, and irregular retinal topography [Delori, 1988]. It is also an indirect measure of oxygen tension.

MRI-based methods have also been used to survey oxygen characteristics of the retinal surface [Ito, 2001]. This method is unhindered by optical properties and eye size, but it requires the use of a perfluorocarbon droplet situated in the preretinal vitreous space, thus limiting its application in human subjects.

Light-based methods for exploring oxygen tensions in the eye have gained recent prominence. Some fluorescent and phosphorescent compounds (see Fig. 2.4) have been discovered to be sensitive to oxygen; when oxygen collides with a light-emitting compound in its excited state, it quenches the molecule and prevents light emission. The use of fluorescence to determine PO₂ is limited due to relatively low sensitivity of fluorescent molecules to oxygen [Vanderkooi, 1987]; fluorophores remain in the excited state for a relatively short period of time (nanoseconds to microseconds), and thus have limited opportunity to collide with oxygen molecules, particularly at low PO₂s. Changes in turbidity of the suspending medium also affect fluorescence measurements. In contrast, phosphorescent probes are not affected by blood flow, and have relatively long lifetimes (microseconds to seconds), thereby increasing the likelihood of collision with oxygen molecules in the blood.

Imaging and Microscopy

Standard research microscopes and low power objectives can be used for viewing the small mouse eye and its vasculature. Major parts of the microscope optical train include the light source, a dichromatic beam splitter (for fluorescence and phosphorescence microscopy), the objective lens, the ocular, and the camera or observer's eye (Figure 2.3). An image is produced and focused to infinity by the

Figure 2.3-Optical train of a microscope. The specimen is illuminated by one of the light sources, and the image of the specimen travels along the optical train to the camera and/or the observer's eye.

objective lens conjugate with the specimen. A very high quality, diffraction-limited

image is produced with a modern, high-numerical aperture plan-apochromatic objective

9

lens [Inoue, 1997]. A tube lens then focuses the image onto a target. When a chargecoupled device (CCD) camera is used, that target consists of a large array of photodiodes deposited on a silicon substrate. Each sensor element on the CCD camera is a silicon photodiode built into the silicon chip, isolated electrically from its neighbors by a channel stop [Inoue, 1997]. The image may also be projected to the eye.

Phosphorescence Lifetime Imaging of Oxygen Tension

Phosphorescence lifetime imaging has been recognized in the literature as a technique for measuring oxygen tension in the vasculature [Wilson, 1991 and Shonat, 1992, 1997, 1998]. This technique can be applied to determine oxygen tensions in the mouse retina and in such a case is based on excitation of a phosphorescent probe and subsequent quenching of phosphorescence by intravascular oxygen. The probe is bolus-injected intravenously, and equilibrates in the bloodstream. It may then be excited by light delivered through the eye. When excited, the probe molecules phosphoresce, and are quenched when they collide with oxygen molecules. The frequency of collision and, hence, the oxygen concentration, may then be determined by computing the lifetime of the phosphorescence decay. The probe remains exclusively in the vasculature in the eye due to the blood-retinal barrier.

The phosphorescent probe generally used is palladium *meso-tetra* [4 carboxyphenyl] porphrine. This probe is sensitive to oxygen in physiological concentrations when bound to excess albumin. It is excited at 422 and 524 nm, and emits phosphorescence at 698 nm, a wavelength in the near-infrared range where the retinal tissue absorbs minimally [Shonat, 1992 and Lo, 1996].

Phosphorescence lifetime imaging requires a unique microscopic instrument (Figure 2.4). An illuminating beam is emitted by a xenon arc lamp, sinusoidally modulated using an optical chopper, and a particular wavelength (524 ± 20 nm) is selected by a monochromator. The light is then low-pass filtered and reflected down into the objective by a dichromatic mirror (pass>575 nm). This light excites phosphorescent molecules in the vasculature to their triplet states, and phosphorescence is emitted during the decay of these molecules back to the ground state. This emitted light then passes

Figure 2.4-The phosphorescence lifetime imaging system. White light is emitted by the xenon arc lamp and sinusoidally modulated by the optical chopper. The monochromator selects a particular wavelength of light, which is directed to the eye by a dichromatic mirror. Phosphorescence is produced by probe in the eye, and travels to the CCD camera.

straight through the dichromatic mirror to the intensifier, which amplifies the relatively weak phosphorescent signal before transmitting it to the CCD camera. The intensifier is also used for the phase-sensitive detection of phosphorescence lifetimes, which will be

explained below. The image is then conducted to the PC-based image analysis system. This technique represents one of the few modes of microscopy in which the illuminating excitation wavelength differs from the wavelength of emitted light [Inoue, 1997]. Due to the relative weakness of the emitted light, high-sensitivity photodetectors and high lightgathering optics are required. These include objectives with high numerical aperture-tomagnification ratios and high transmission for the relevant wavelengths [Inoue, 1997]. Phosphorescence is defined as the emission of light during a transition from an excited triplet state to the ground state. The energy diagram in Figure 2.5 illustrates this phenomenon. The three singlet states (ground, first, and second) are depicted by S_0 , S_1 , and S_2 , respectively. In each of these states, the molecule may exist in a number of vibrational energy levels, indicated by 0, 1, 2, etc. [Lakowicz, 1999]. Photons are depicted by lightning bolts. The vertical lines represent possible transitions between states, illustrating the instantaneous nature of light absorption.

When a fluorescent or phosphorescent molecule absorbs a photon, it is excited to a higher vibrational level of S_1 or S_2 . Fluorophores then rapidly relax to the lowest vibrational level of S₁, a process called internal conversion (Figure 2.4) [Lakowicz, 1999]. The molecule will then return to the ground state at any of the vibrational energy levels, quickly relaxing to the lowest level. During the decay to the ground state, the molecule emits of photon in the form of fluorescence.

Excitation to the triplet state (T_1) involves a spin conversion from the S_1 state, resulting in a state with unpaired spins—a phenomenon termed intersystem crossing (Figure 2.4) [Turro, 1978 and Lakowicz, 1999]. In this excited state, the two electrons are each in a different orbital, and thus the Pauli exclusion principle does not require their

Figure 2.5—Energy diagram for fluorescent and phosphorescent molecules. S₀, S₁, and S₂, depict ground, first, and second singlet states, respectively. T_1 depicts the triplet state. Each state has representative vibrational states indicated by 0, 1, and 2. Solid vertical lines arrows represent transitions between states, dashed arrows represent vibrational relaxation within states, and lightning bolts represent photons. A molecule is excited from the ground state to any of the vibrational levels of the singlet state, and then decays to the lowest vibrational state in S₁. Fluorescent molecules will then decay down to the ground state with the emission of fluorescence, with a total reaction time on the order of ns to µs. Phosphorescent molecules undergo a spin flip to the triplet state. then decay to the ground state with a spin flip and phosphorescence emission, with a total reaction time of the order of µs to s. Once in the ground state, molecules will relax to the lowest energy level (0). Adapted from Lakowicz, 1999 and Vanderkooi, 1990.

spins to be paired. The energy required to produce this excited state is determined by the equation

$$\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1 = \mathbf{h}\boldsymbol{\upsilon}$$

where h is Planck's constant, v is the frequency of the excitation light, and E_2 and E_1 are the energies of a single molecule in the initial and final states [Turro, 1978]. Like the singlet state, the triplet state is a metastable species, and will decay to the ground state after a finite time, emitting a photon in the form of phosphorescence. However, the decay from the triplet state takes a relatively long time (microseconds to seconds) when

compared with decay from the singlet state (nanoseconds to microseconds) due to the quantum mechanically forbidden spin flip completed during the decay.

When a large number of phosphorescent molecules are excited simultaneously, the resultant light emission is the sum of the individual photon emissions, and can be represented by the function:

$$I(t) = I_0 \exp(-t/\tau)$$

where I(t) is the phosphorescence intensity as a function of time (t), I₀ is the initial, maximum intensity at t = 0, and τ is the lifetime of the decay [Shonat, 1995].

In phosphorescence the excitation and emission wavelengths differ, and neither is exact; the numerous possible vibrational states create a range of wavelengths that may be absorbed or emitted, with a relative maximum wavelength resulting from conversions between the most common states. The excitation spectrum for palladium *meso-tetra* [4-carboxyphenyl] porphrine, the phosphorescent probe used in this study, has maxima at 420 and 524 nm. Due to the absorption of excitation light by blood, the volume of excitation, defined as the excitation area times the penetration depth, is ten times smaller at 420 nm than at 524, and the total quantity of probe excited is reduced [Shonat, 1995]. The emission is maximal at 687 nm, regardless of what wavelength is used for excitation; decay always occurs from the lowest vibrational level of the triplet state resulting in a consistent emission spectrum [Lo, 1996 and Vanderkooi, 1990].

When the phosphorescent probe is excited by light that has been sinusoidally modulated, the phosphorescence emitted will have the same frequency, but will have lower amplitude and be delayed in phase by an angle θ . θ is related to the probe lifetime, τ , by the following equation:

$\tan \theta = \omega \tau$

where ω is the excitation frequency [Shonat, 1997].

A phosphorescent molecule that has been excited to the triplet state may transfer its energy to another molecule without light emission, a phenomenon termed *quenching* (Figure 2.6). Such interactions between phosphors and their environment are common; the spin-forbidden transition from the triplet state to the ground has a relatively long lifetime, and increases the probability of contact between molecules [Vanderkooi, 1990].

Figure 2.5—Quenching of the phosphorescent probe by oxygen. 6When the two molecules collide, the decaying probe gives its energy to oxygen instead of giving it off as phosphorescence. This results in a singlet oxygen molecule, which decays to the ground state within microseconds.

In blood, the only significant quenching agent is oxygen [Wilson, 1991]. The degree of quenching of the phosphorescent molecule depends on the concentration of oxygen in its vicinity [Shonat, 1992]. The efficiency of phosphorescence quenching is governed by the frequency of collision between the excited triplet state molecule and the quencher before the phosphor returns to the ground state. This relationship is represented by the Stern-Volmer equation:

$$\tau_{\rm o} / \tau = 1 + k_{\rm Q} \tau_0 [{\rm PO}_2]$$

where τ_0 is the lifetime in the absence of oxygen, k_Q is the bimolecular rate constant (or quenching constant), and [PO₂] is the oxygen concentration [Vanderkooi, 1987, Shonat, 1995 and 1997, and Lo, 1996]. In a zero oxygen environment, $\tau = \tau_0$ and the lifetime is a maximum.

Quenching reactions form excited singlet oxygen (Figure 2.5), which may react with unsaturated double bonds in lipids to form peroxides. These peroxides destructively alter amino acids and nucleic acids. However, destruction of biological tissue by these reactions is mitigated by the fact that singlet oxygen decays to the ground state within microseconds, and any chemical reactions must occur by collision with the singlet-state molecule before it decays [Vanderkooi, 1987]. However, the potential for vascular damage must always be considered when using these probes for *in vivo* applications.

Palladium meso-tetra porphrine must be mixed with excess albumin prior to injection for phosphorescence quenching studies. This complex has several properties essential to accurate phosphorescence lifetime imaging: the sensitivity to quenching of albumin-bound probe by oxygen is independent of the suspending medium or probe concentration in solution, self-quenching of the probe is eliminated, and the sensitivity to oxygen is increased since the binding to albumin decreases k_Q [Vanderkooi, 1987 and Shonat, 1995]. As long as albumin is present in excess of the probe, the probe/albumin complex may be suspended in saline and injected directly into the femoral vein, and will show no decrease in phosphorescence intensity over several hours [Wilson, 1991].

Calibration of the probe for determining oxygen concentration in the vasculature is absolute—calibration depends only on the phosphor and its molecular environment,

which remain constant for such experiments [Lo, 1996]. Once τ_0 and k_Q are known *ex vivo*, they apply *in vivo* and recalibration is not necessary [Vanderkooi, 1987].

From phosphorescence lifetime, PO_2 can be calculated. A phase-sensitive measure of this phosphorescence lifetime is possible when the delivered excitation light and the sensitivity of the collection system (intensifier) can be independently modulated and the phase relationship between these two elements can be accurately varied [Shonat, 1997]. Intensity images may then be taken with increasing intensifier phase delays relative to excitation phase, and a graph of intensity versus phase delay constructed. This graph may be used in conjunction with the following equation to determine the phosphorescence phase delay, θ :

$$I(\theta_{D}) = k[Pd] \{1+ m_{D}m\cos(\theta - \theta_{D})\}$$

where $I(\theta_D)$ is the intensity as a function of known phase delay, k is a constant, [Pd] is the probe concentration, θ_D is the phase delay of the intensifier sensitivity, m_D is the modulation of the emission, and

$$m = (1 + \omega^2 \tau^2)^{-1/2}$$
.

However, since this equation is nonlinear, applying it to each pixel in an image is computationally difficult. A linearized form of the equation was developed by Lakowicz [1992] by applying the trigonometric identity for subtraction of cosine terms and combining the fitting parameters into linear coefficients:

$$I(\theta_{\rm D}) = a_0 + a_1 \cos\theta_{\rm D} + b_1 \sin\theta_{\rm D}$$

where a fit to the equation can be determined by the evaluation of a_0 , a_1 , and b_1 using linear regression. θ is then determined as:

$$\tan^{-1}(b_1/a_1)$$

and may be used to determine τ for each pixel. This value of τ is used in the Stern-Volmer equation to calculate PO₂ maps (Figure 2.7).

Figure 2.7—Maps of the mouse retina. The PO_2 map (A) is created using the Stern-Volmer equation. The parameters for the equation are calculated by fitting a series of intensity images to a linear equation (B shows the R^2 for this fit in every pixel), which is used to determine phase shift (D). Phase shift is then used to calculate lifetime (C).

Certain hardware and software elements and an electronic interface are required for the generation of PO_2 maps (Figure 2.8). The program used for data collection,

Figure 2.8—Schematic diagram of the phosphorescence lifetime imaging system.

WinViewNT (Roper Scientific, Trenton, NJ), allows for control of the digital delay generator (Stanford Research Systems, Sunnyvale, CA) and the camera and its intensifier (Roper Scientific, Trenton, NJ). The delay generator sets the phase delay of the intensifier relative to the optical chopper. The optical chopper controller (Photon Technology, Brunswick, NJ) rotates the chopper disc at 1.6 kHz, and sinusoidally modulates the light produced by the Xenon arc lamp. The light passes through a monochromator (Photon Technology), which selects the wavelength used for excitation (524±20 nm). A shutter (Vincent Associates, Rochester, NY), which is directly connected to the camera control mechanism, operates in parallel with the camera, opening only during camera exposure and blocking the excitation light when the camera shutter is closed. The light passes through a focusing lens and an interference filter, is reflected off a dichromatic mirror, and is concentrated by an infinity-corrected objective to reach the retinal plane [Shonat, 1992 and 1995]. Light emitted from the eye is collected by the objective and sent to the dichromatic mirror, where wavelengths longer

than the cut-off wavelength of 630 nm pass through to the intensifier to the CCD camera [Shonat, 1992]. The camera delivers each image to the WinViewNT program, where the entire series may be stored as a single binary data file.

Advantages of phosphorescence lifetime imaging of oxygen tension are numerous. Recalibration of the probe is not required. The response time is very short, and signal acquisition and calculation are rapid. Data analysis is also relatively simple, since the dependence of phosphorescence lifetime on oxygen pressure follows a welldefined physical relationship, which can be expressed with simple equations [Lo, 1996].

Difficulties with the phosphorescence lifetime imaging technique mainly involve the possible effects of the excitation on the tissue. The excitation of the phosphorescent probe within the blood vessels of the eye and subsequent quenching by oxygen creates oxygen free radicals, which are toxic to the vessels and tissue. Extensive excitation of the probe decreases the amount of oxygen available to the eye, and can cause significant damage. To limit tissue damage, the concentration of the probe and the duration of exposure to excitation light should be kept to a minimum [Shonat, 1995].

To utilize the phosphorescence lifetime imaging system to its fullest potential, the existing structure was calibrated using an *in vitro* system to ensure that oxygen maps report accurate PO₂ values. Acquisition parameters, including camera exposure time, intensifier settings, power of excitation light, and number of images necessary for determining phase shift were determined for *in vivo* experiments. Histological techniques were used in an attempt to assess any microvascular damage induced by the measurement.

3. METHODS

Despite its potential usefulness in the characterization of oxygen tensions in diabetic retinopathy and other oxygen-related eye diseases, the specific parameters for phosphorescence lifetime imaging in the mouse eye have not yet been determined. The primary goal of this project was to determine these parameters. To this end, *in vitro* and *in vivo* experiments were conducted, and appropriate gains, exposure times, and other imaging considerations were examined.

Data Acquisition and Analysis

Phosphorescence intensity images were collected using the WinViewNT software package (see Background). For each data set, a series of 15 to 30 images was taken at increasing phase delays, and stored as a single binary data file. Data analysis for all *in vitro* and *in vivo* experiments was done using Microsoft Excel, SigmaPlot, and a program in MatLab called "Retina," developed by Ross Shonat (see Appendix B).

Three experiments at each gain and exposure time were performed. Map R^2 values, indicating the fit to the equation $I(\theta_D) = a_0 + a_1 \cos\theta_D + b_1 \sin\theta_{D_1}$ were used as an indication of the quality of the oxygen maps. PO₂ means and standard deviations for specified regions were calculated using the "Retina" program.

In Vitro Experiments

An *in vitro* system was constructed to calibrate the phosphorescence lifetime imaging system and to determine approximate gain settings and exposure times required to produce acceptable oxygen maps. The system, pictured in Figure 3.1, included a

Figure 3.1—In vitro system. The system consists of an oxygenator connected to a gas mixer, a peristaltic pump used for circulating probe solution inside the system, and a square glass capillary tube situated under the microscope objective used for measuring the PO_2 of the solution. The parts are connected with Tygon® microbore tubing, which may be disconnected at various junctions and injected with solution using a 22-gauge needle and syringe.

length of Tygon® tubing, into which a probe solution, consisting of 12 ml albumin stock solution, 148 mg NaCl, 216 mg glucose, and 10 µl probe was injected. A peristaltic pump was used to circulate the fluid through the system. The phosphorescent solution flowed through an oxygenator (consisting of a length of plastic tubing, inlaid with a Plexiglas rod wrapped with oxygen-permeable silastic tubing, and capped at each end by a rubber stopper with an inlet connector for the gas mixer and an outlet for exhaust), used to apply gas mixtures with known oxygen concentrations. Upon leaving the oxygenator,

the solution flowed through a square glass capillary tube situated under the phosphorescence lifetime imaging system. The phosphorescence lifetime was then measured as previously described, and a PO_2 map was generated. The correspondence between the PO_2 values indicated by the map and those applied using the gas mixer and oxygenator was used to calibrate the system to provide accurate measures of PO_2 within the vasculature.

Signal-to-noise ratios (SNR) were used to determine appropriate gain settings and exposure times. The probe was equilibrated at a physiological oxygen concentration of 40 mm Hg (5% oxygen applied using the gas mixer and oxygenator). Exposure times were tested at random in an attempt to achieve a maximal range of SNR for camera intensifier gain settings 10, 100, and 255. Exposure times yielding SNR of approximately 2 and approximately 225 were noted for each gain. Phosphorescence lifetime images were then taken at a range of ten exposure times equally spaced between the time yielding SNR \approx 2 and the time yielding SNR \approx 225. R² maps, which demonstrate the integrity of the fit between the phosphorescence intensity data and the equation $I(\theta_D) = a_0 + a_1 \cos\theta_D + b_1 \sin\theta_D$, were then created. From these maps, the average R² value for the entire capillary tube was determined. These values were plotted versus SNR for each gain setting

The *in vitro* system was also used to calibrate the phosphorescence lifetime imaging system against known oxygen concentrations. Oxygen concentrations in the physiological range of zero to 100 mm Hg were tested. To obtain concentrations in this range, the oxygenator was used to apply gas mixtures between one and 12 percent O_2 balanced with N_2 . A zero oxygen environment was obtained by adding probe solution

and a pinch of glucose oxidase to a closed cuvette to prevent leakage of environmental oxygen into the system (Figure 3.2). At each oxygen concentration, ten image sets were taken at each of four gain settings (100, 70, 40 and 10). Exposure times were 0.23, 0.47, 0.83, and 1.0 seconds, respectively, and were selected based on the fact that they yield SNRs between 3 and 15. After each exposure, the objective was blocked with white paper to produce intensity images with a theoretical phase delay of zero and a modulation of one (reflected images). These data were used to determine the intrinsic phase delay and modulation of the instrument.

Figure 3.2—Zero-oxygen *in vitro* testing system. Cuvette is filled with glucose-containing probe solution, to which glucose oxidase is added to remove all oxygen.

In Vivo Oxygen Mapping

All animal experiments were performed in accordance with WPI's Institutional Animal Care and Use Committee (IACUC) protocols and the Association for Research in Vision and Ophthalmology statement for the Use of Animals in Ophthalmic and Vision Research. Mice were anesthetized prior to all experiments with a solution of 125 µl

Avertin and 4.875 ml saline, in the amount of 0.25 ml/10 g body weight (adjusted as needed). When fully anesthetized, one eye per mouse was dilated with Mydriacyl (1%). Mice were fixed in a stereotaxic head holder (Figure 3.3) to prevent movement and assist placement during experimentation. A drop of Goniosoft ophthalmic ointment was placed on the dilated eye, and a small piece of microscope coverglass was situated on top of the layer of Goniosoft to negate the refractive power of the cornea.

Figure 3.3—Stereotaxic head holder. Mouse rests on a heated platform, designed to maintain body heat while animal is under anesthesia. The mouthpiece is inserted into the animal's mouth, and the nosepiece is tightened onto the nose with the tension knobs. The rotational knobs are loosened to allow proper positioning of the head so the eye may be viewed, and tightened to prevent movement once the proper position is achieved.

Probe solution was introduced through the femoral vein by venous puncture. A

small patch of skin was removed above the vessel, and a solution of 10 mg/ml Pd meso-

tetra [4-carboxyphenyl] porphrine in bovine serum albumin was bolus injected in the

amount of 10 mg/kg body weight¹. Following injection, the vein was cauterized to

¹ Dosages of 5 mg/kg and 15 mg/kg were also tested; however, the lower dose yielded relatively faint intensity images, while the higher dose resulted in damage to the retinal vessels with relatively little light exposure.

prevent bleeding. The mouse was then placed under a dissecting microscope, and the position of the head was adjusted such that the retinal blood vessels radiating from the optic nerve were visible. Power density of the excitation light (mJ/cm²) was measured prior to data collection using a photodetector and power/energy meter (Newport Corporation, Irvine, CA).

Eight mice, labeled 1a-8a, were prepared and tested at gains 10, 40, 70, and 100, as determined by the *in vitro* experiments. Exposure times were selected based on preliminary *in vivo* tests; times yielding signal-to noise ratios between 3 and 15 without exceeding 1.0 second were used (Table 3.1). Fifteen images per set, determined during *in vitro* experiments to be adequate, were taken beginning with an intensifier delay of 5 μ s and continuing at 20 μ s increments. Experiments were performed in triplicate for each gain and exposure time setting. The sequence of data collection was varied in each mouse (see Appendix E).

Gain	Exposure Times (seconds)
100	0.6, 0.145, 0.23, 0.315, 0.4
70	0.15, 0.31, 0.47, 0.63, 0.79
40	0.32, 0.49, 0.66, 0.83, 1.0
10	0.4, 0.55, 0.7, 0.85, 1.0

Table 3.1—Gain settings and exposure times used for *in vivo* experiments.

Regions of interest in a vein, an artery, and a section of tissue were then selected for each mouse. The "Retina" program (Appendix B) was used to analyze these different and distinct regions. A maximum PO_2 of 150 was used in the analysis, and all pixels exceeding this value were rejected as physiologically impossible. The following parameters were noted for each region:

- Fitting parameters a₀, a₁, and b₁
- Phase shift (θ)
- Modulation (m)
- PO₂ mean and standard deviation
- R² mean and standard deviation
- Number of pixels in the selected region of interest
- Number of pixels from the selected region of interest used for calculations Signal-to-noise was calculated as a₀ (the DC fitting term) divided by the average intensity

with the microscope objective's shutter closed (camera dark noise). Accumulated energy deposition at each point in the experiment was calculated as excitation light power (measured with a power/energy meter) divided by excitation light area multiplied by cumulative exposure time. The analysis was then repeated using a smaller number of the images (7), beginning with the first and continuing with every other image in each set to maintain uniform phase delay increments.

Histology

Histology was used as a potential method for determining any damage to the mouse eye incurred during phosphorescence lifetime imaging, and, potentially, as a method for correlating physical damage caused by disease with the PO₂ maps. No standard technique for conducting histology on the mouse retina exists, so the assistance of Dr. Robert Frank of the Kresge Eye Institute, Wayne State University, Detroit, MI, was sought. His expertise in performing trypsin digestion and periodic acid solution (PAS)/hematoxylin staining on rat retinas was well known, and personal communication with him and personnel in his lab indicated that this technique could be successfully

applied to the mouse retina. A visit to his lab allowed the intricacies of the technique to be learned, and a protocol for conducting trypsin digestion and PAS/Hematoxylin staining on the mouse retina was developed (see Appendices C and D).

To induce damage following *in vivo* calibration experiments, probe-injected (10 mg/kg) mice were exposed continuously to 524 nm excitation light for an extended period of time on a single eye. Following continuous exposure for an hour, mice were removed to a dissecting microscope. Complete retinal vascular damage was confirmed by the absence of blood flow in retinal vessels (vessels appearing white in color, rather than the normal red). Eyes were removed and retinas were digested and stained, with the non-exposed eye serving as a control.

4. **RESULTS**

Phosphorescence Intensity

Phosphorescence intensity images were acquired, and graphs of intensity vs. phase delay created for each *in vitro* and *in vivo* experiment. Sample data appears in Tables 4.1 and 4.2, and sample images and curves appear in Figures 4.1 and 4.2.

Image	Phase Delay	Intensity	Intensity
Number	(Radians)	Average	Standard Dev.
2	14.4	941	213
3	25.9	975	222
4	37.4	987	224
5	49.0	985	224
6	60.5	980	224
7	72.0	950	218
8	83.5	923	212
9	95.0	886	203
10	106.6	840	194
11	118.1	788	184
12	129.6	719	170
13	141.1	665	159
14	152.6	604	146
15	164.2	549	134
T		 .	

Table 4.1—Sample data for *in vitro* image set.

	Phase	Artery	Artery	Vein	Vein	Tissue	Tissue
Image	Delay	Intensity	Intensity	Intensity	Intensity	Intensity	Intensity
Number	(Radians)	Average	St. Dev.	Average	St. Dev.	Average	St.Dev.
2	14.4	655	30	1150	114	372	32
3	25.9	654	41	1164	121	370	28
4	37.4	640	31	1165	119	357	29
5	49.0	619	35	1135	112	342	31
6	60.5	594	29	1106	109	323	28
7	72.0	564	30	1052	105	302	267
8	83.5	532	27	1008	102	279	24
9	95.0	482	30	936	98	254	22
10	106.6	444	29	878	94	228	20
11	118.1	403	24	810	82	202	20
12	129.6	353	22	730	80	178	16
13	141.1	325	24	655	73	155	16
14	152.6	275	16	589	63	134	13
15	164.2	248	19	522	57	118	12

 Table 4.2—Sample data for *in vivo* image set.

Figure 4.1—Sample intensity images and intensity vs. phase delay graph for *in vitro* experiments. Intensity images corresponding to phase delays of 25° , 95° , 25° , and 164° , are shown. The region of interest used for intensity averaging is indicated by the red line in each image. The maximum value on the graph, corresponding to the phase delay, and used to calculate PO₂, is also indicated.

Figure 4.2—Sample intensity images and intensity vs. phase delay graph for *in vivo* experiments. Intensity images corresponding to phase delays of 25° , 95° , 25° , and 164° , are shown. The region of interest used for intensity averaging is indicated by the red region in each image—vein, artery, and tissue were selected for each animal tested. The maximum value on the graph, corresponding to the phase delay, and used to calculate PO₂, is also indicated.

In Vitro Tests

The phosphorescence lifetime imaging system was calibrated using the *in vitro* testing system, described in the methods section. Early experiments identified a drift in the optical chopper phase, which was rectified with a change in hardware. Experiments

with a blocked objective and no phosphorescence verified that the instrument did not produce significantly different results at different gains, exposure times, or total experiment times. However, an intrinsic phase error of 0.80 and modulation error of 0.67 were discovered. The phase error was subtracted from all subsequent data sets, and the modulation error was divided. Following this correction, PO_2 and R^2 maps (where R^2 is a measure of the fit of the intensity images to the specified equation) were created for each image set, a sample of which appears Figure 4.3, and a final calibration curve was generated (Figure 4.4).

To determine if map fit was affected by intensity signal-to-noise ratio, average R^2 value for the capillary tube was plotted versus SNR (with SNR calculated as the average intensity of images taken at a series of 30 delay settings between 10 and 300 µs divided by the average intensity of images taken with no light entering the camera). The results appear in Figure 4.5.

Figure 4.3—Sample PO₂ and \mathbb{R}^2 maps for *in vitro* experiments. Regions of interest selected for data analysis in the "Retina" program are delimited by the blue lines.

Figure 4.4—In vitro calibration curve. The x-axis represents oxygen concentrations applied with the gas mixer. The y-axis indicated PO_2 as determined by the phosphorescence lifetime imaging system. A line of identity intersects the data, indicating that the system produced accurate PO_2 maps.

Figure 4.5—Average R^2 value versus SNR for gain settings 10, 100, and 255. Gain 255 gave less than acceptable R^2 values regardless of signal-to noise ratio. Gains 10 and 100 yielded very high R^2 values at SNR>50.

These data indicate that a gain setting of 255 did not produce images with acceptable R^2 values (>0.9), even at high signal-to-noise ratios. In contrast, R^2 values of greater than 0.9 were obtained with gain settings 10 and 100 for all SNR > 50. These results were verified in subsequent experiments (data not shown). As a result, all subsequent experiments were conducted at gain settings between 10 and 100. Since the data indicated that all SNR>50 yield similarly high R^2 values, exposure times resulting in signal-to-noise ratios of 50 or less were used, thereby minimizing excitation light exposure.

In Vivo Tests

For all image sets with 15 images each, a vein, an artery, and a section of tissue were analyzed (Figure 4.6). In general, PO₂ was highest in the tissue region, and lowest in the veins. For each of these regions, graphs were created for R^2 vs. SNR, PO₂ vs. accumulated energy deposition, and PO₂ vs. SNR. The raw data for each animal appear in Appendix E, and sample data and graphs for a single mouse (Mouse 1a) are shown in Table 4.3 and Figure 4.7. Figure 4.8 contains summary plots of R^2 vs. signal-to-noise ratio for the three regions in all mice. Each data point represents an individual image set.

For all regions, lower gains produced better fits at lower signal-to-noise ratios. All gain settings yielded R^2 values of approximately 0.95, but a gain setting of 100 requires an SNR of greater than 10 to produce this good fit. Conversely, a gain setting of 10 requires an SNR of only 4 to produce an excellent fit. However, it must be considered that achieving an SNR 4 at gain 10 requires an exposure time of 1.0 seconds, while achieving an SNR of 10 at gain 100 requires an exposure time of only 0.4 seconds.

Figure 4.6—Sample PO_2 and R^2 maps for *in vivo* experiments. Regions of interest for vein (top), artery (bottom) and tissue (center) are indicated by the blue lines.

				Accumulated					
		Relative	Cumulative	Energy					
	Exposure	Image	Image	Deposition		PO2	PO2 St.	R2	R2 St.
Gain	Time	Number	Number	(mJ/cm^2)	SNR	Mean	Dev	Mean	Dev
100	0.06	1	1	4.5	3.1	31.3	25.5	0.71	0.11
100	0.06	2	2	9.1	3.1	33.2	24.6	0.70	0.12
100	0.06	3	3	13.6	3.1	39.4	29.7	0.72	0.11
100	0.145	1	4	24.6	6.6	37.3	22.3	0.86	0.06
100	0.145	2	5	35.6	6.2	38.1	23.5	0.85	0.06
100	0.145	3	6	46.6	5.9	35.2	20.7	0.85	0.06
100	0.23	1	7	64.1	8.9	40.2	22.2	0.90	0.04
100	0.23	2	8	81.5	8.4	39.4	21.6	0.91	0.04
100	0.23	3	9	99.0	8.3	37.7	19.5	0.90	0.04
100	0.315	1	10	122.8	11.7	36.4	16.2	0.93	0.03
100	0.315	2	11	146.7	11.1	40.4	20.7	0.93	0.03
100	0.315	3	12	170.6	10.7	43.4	19.4	0.93	0.03
100	0.4	1	13	200.9	14.4	37.0	14.1	0.98	0.03
100	0.4	2	14	231.3	14.2	37.1	14.4	0.95	0.02
100	0.4	3	15	261.6	13.0	39.7	17.0	0.94	0.02
70	0.15	1	16	273.0	2.7	47.8	30.2	0.83	0.07
70	0.15	2	17	284.4	2.6	44.2	28.1	0.84	0.07
70	0.15	3	18	295.7	2.6	39.0	25.3	0.84	0.07
70	0.31	1	19	319.2	4.3	41.2	20.9	0.91	0.04
70	0.31	2	20	342.7	4.2	43.5	22.8	0.91	0.04
70	0.31	3	21	366.2	4.3	41.4	22.2	0.91	0.04
70	0.47	1	22	401.9	5.8	41.7	18.6	0.94	0.03
70	0.47	2	23	437.5	5.6	43.4	19.4	0.94	0.03
70	0.47	3	24	473.2	5.8	43.6	20.2	0.94	0.03

المنسلي للاستشارات

70	0.63	1	25	520.9	7.1	44.5	17.8	0.95	0.02
70	0.63	2	26	568.7	7.0	46.1	20.9	0.95	0.02
70	0.63	3	27	616.5	7.3	47.8	19.1	0.95	0.02
70	0.79	1	28	676.4	8.5	46.4	18.0	0.96	0.02
70	0.79	2	29	736.3	8.3	46.9	20.6	0.96	0.02
70	0.79	3	30	796.2	8.6	41.7	15.2	0.96	0.02
40	0.32	1	31	820.4	2.4	42.1	24.5	0.88	0.05
40	0.32	2	32	844.7	2.5	44.2	26.1	0.89	0.05
40	0.32	3	33	869.0	2.4	47.2	26.5	0.89	0.05
40	0.49	1	34	906.1	3.1	41.2	20.9	0.92	0.04
40	0.49	2	35	943.3	3.1	46.8	24.3	0.92	0.03
40	0.49	3	36	980.4	3.0	48.4	25.6	0.92	0.04
40	0.66	1	37	1030.5	3.7	45.5	22.2	0.95	0.03
40	0.66	2	38	1080.5	3.9	43.4	18.8	0.94	0.03
40	0.66	3	39	1130.6	3.7	45.9	20.9	0.94	0.03
40	0.83	1	40	1193.5	4.3	48.0	20.9	0.95	0.02
40	0.83	2	41	1256.4	4.4	44.8	21.1	0.95	0.02
40	0.83	3	42	1319.4	4.4	45.3	19.3	0.95	0.02
40	1	1	43	1395.2	5.2	45.1	18.3	0.96	0.02
40	1	2	44	1471.0	5.1	42.4	16.3	0.95	0.02
40	1	3	45	1546.9	5.2	44.0	18.1	0.96	0.02
10	0.4	1	46	1577.2	1.8	42.3	24.6	0.86	0.06
10	0.4	2	47	1607.5	1.9	44.6	26.7	0.87	0.05
10	0.4	3	48	1637.9	1.9	45.6	27.3	0.86	0.06
10	0.55	1	49	1679.6	2.1	43.8	22.8	0.90	0.04
10	0.55	2	50	1721.3	2.1	38.2	19.7	0.90	0.04
10	0.55	3	51	1763.0	2.1	42.9	23.9	0.90	0.04
10	0.7	1	52	1816.1	2.4	42.3	21.3	0.91	0.04
10	0.7	2	53	1869.1	2.5	40.6	21.4	0.92	0.03
10	0.7	3	54	1922.2	2.4	44.4	21.3	0.92	0.04
10	0.85	1	55	1986.7	2.6	43.8	21.1	0.93	0.03
10	0.85	2	56	2051.1	2.8	41.7	19.7	0.93	0.03
10	0.85	3	57	2115.6	2.8	43.3	20.2	0.93	0.03
10	1	1	58	2191.4	3.0	43.5	20.2	0.94	0.03
10	1	2	59	2267.2	3.1	45.1	19.5	0.94	0.03
10	1	3	60	2343.0	2.9	46.1	20.9	0.94	0.03

Table 4.3—Sample raw data for *in vivo* experiments, from Mouse 1a vein. Data were calculated from PO_2 and R^2 maps and intensity images using the "Retina" program.

Figure 4.7—Sample graphs of *in vivo* data, taken from Mouse 1a vein. Panel A represents a typical graph of \mathbb{R}^2 value vs. SNR, where \mathbb{R}^2 value increases slightly with increasing SNR. Panel B shows a typical map PO₂ vs. accumulated energy deposition graph, where the slope of the trendline is not statistically different from zero in the negative direction (one-tailed Student's t-test, p>0.05).

Figure 4.8—Map R^2 value versus SNR in vein, artery, and tissue for all animals tested. Each point represents an individual image set and R^2 map.

Composite graphs of PO₂ vs. accumulated energy deposition and vs. signal-tonoise were not created, as differences in oxygen tensions in individual mice made such general comparisons inappropriate. However, graphs of these parameters for individual mice appear in Appendix E. For all animals, the slope of the linear best-fit lines on these plots is not significantly different from zero in the negative direction (one-tailed Student's t-test, p>0.05), indicating that PO₂ was not affected by increasing energy deposition or SNR.

Results of analysis of image sets with seven images were compared to those obtained with 15 images to determine if fewer images (which would result in decreased light exposure and less possible physiological damage) could produce accurate maps. A parameter termed "Delta PO₂," defined as the PO₂ calculated with 15 images minus that

Figure 4.9—Delta PO_2 versus image number for Mouse 4a. PO_2 differs by as much as 17 mm Hg when calculated with the fewer number of images, indicating that seven images are too few for calculating PO_2 accurately.

Mouse	Vessel	Average Delta PO2	Delta PO2 St.Dev.
1	Vein	-0.6	3
1	Artery	2.1	3.9
1	Tissue	5.7	3.3
3	Vein	3.7	2.8
3	Artery	7.1	2.5
3	Tissue	9.8	1.8
4	Vein	7.7	3.1
4	Artery	7.9	3.3
4	Tissue	11.3	3.6

Table 4.4—Summary of delta PO_2 mean and standard deviation for Mice 1a, 3a, and 4a. Delta PO_2 is significantly different from zero in most cases, indicating that the use of seven images does not produce accurate PO_2 values.

calculated with seven, was used to examine possible error incurred using fewer images.

Sample results appear in Figure 4.9 and Table 4.4. PO₂ differed significantly when

calculated with seven images in some cases, indicating that seven images is too few for calculating accurate PO_2 values.

Histology

Trypsin digestion and PAS/Hematoxylin staining (see Appendices C and D) were performed on mouse eyes visibly damaged by light exposure, and on unexposed control eyes from the same mouse. No apparent differences were observed between the two types of retinas during the digestion procedure, with the exception that the photoreceptors of the damaged retinas appeared darker in color than those of the controls.

Trypsin digestion of the mouse retina proved to be an extremely difficult, lengthy, and frustrating process with little reproducibility. The retinas often did not digest completely, requiring extensive mechanical dissection to remove the inner limiting membrane and cellular debris, often resulting in damage to the vessel bed. Digesting for longer periods in an attempt to correct this problem resulted in the dissolution of the entire retina, including the vasculature. A mounting of the entire, intact vascular bed onto a slide was never accomplished.

Even somewhat successful digestions, in which large sections of the vasculature were mounted onto slides, yielded questionable results when stained (Figure 4.10). While the photographs in the first row appear to show flatter, denser arteries and veins in the damaged eye (panel B) when compared with the control (panel A), this phenomenon cannot be seen in the second or third rows (photographs of different mice). The large, dark blue areas in these photographs represent sections of cellular debris that were not cleared away. As is evident in the pictures, these sections interfere with visualization of the vessels, particularly the capillary beds. However, removing such debris was often

impossible without destroying the vessels themselves. While it may be stated that the large vessels in eyes exposed to large amounts of excitation light had a flatter appearance than those of their unexposed counterparts, the evidence is largely inconclusive. Additionally, no apparent changes in the capillary structure are visible.

As faulty technique may have been responsible for the poor quality of the mounts, the procedure was also performed on a healthy rat retina. Trypsin digestion of the rat retina is a widely accepted procedure, yielding excellent results when performed properly. Results of this digestion appear in Figure 4.11. The entire vascular bed was successfully mounted in nearly intact form, and the capillary structure is more clearly visible at high magnification. The success of this digestion indicates that faulty technique is not the cause of the poor quality of the mouse digests.

Figure 4.10—Trypsin digestion slides of control (left column) and damaged (right column) mouse retinas. The damaged retina in panel B appears to have lost some of its structural integrity when compared with its control in panel A—the large vessels appear flatter, and the nuclei (blue stain) appear denser within the vessels. However, the same direct comparison is not possible in the subsequent panels due to damage to the retinal vessels incurred during dissection, and dark staining of the cellular debris not removed during the trypsin digestion procedure.

Figure 4.11—Trypsin digestion of the rat retina, viewed at 4x (A), 10x (B), and 20x (C) magnification. The vessel bed is nearly intact, and the capillaries are significantly more visible when compared with the mouse digests (Figure 4.1).

5. DISCUSSION

Significance of Results

The first aim of this project was to calibrate the phosphorescence lifetime imaging system against known oxygen concentrations. This was achieved using the *in vitro* calibration system, shown in Figure 4.1. For the physiologic range of oxygen concentrations, the instrument and data analysis program produce accurate PO₂ maps.

The second aim of determining optimal parameters for probe excitation was achieved during *in vivo* experiments. Wavelength and bandwidth of 524±20 nm, as recommended in the literature, yielded acceptable maps. A decrease in PO₂ was used as an indicator of vessel damage; vessels damaged using this technique demonstrate a decrease in blood flow, which would subsequently decrease PO₂. Setting energy and power to keep accumulated energy deposition below 2500 mJ/cm² prevented damage in the eye, as analyzed using observation of vessels and lack of a decrease in average PO₂ over the course of image collection.

Qualitatively, the relationship between PO₂ values in the different regions analyzed (vein, artery, and tissue) made logical sense. The physiological structure of the retina, with the high-PO₂ choroidal vasculature lying behind the lower-PO₂ retinal vasculature, caused some interference in phosphorescence images. In the major blood vessels, the light-absorbing properties of hemoglobin prevented the excitation light from reaching the probe within the choroidal vasculature, so the true PO₂ of the retinal vessels was determined. However, this effect was reduced in the capillary beds, which lie in the tissue sections analyzed—the excitation light was allowed to reach the choroid, and

phosphorescence was emitted from this oxygen-rich vasculature, yielding high PO₂ map values.

Relationships between camera exposure time, intensifier gain, and the quality of oxygen maps was also achieved with *in vivo* experiments. Signal-to-noise ratios of phosphorescence intensity images were determined to be dependent on camera intensifier gain settings. Low gain settings yielded better fits, and, therefore, better oxygen maps at lower signal-to-noise ratios, but at the cost of longer exposure times. When creating oxygen maps, the quality of the maps necessary must be weighed against the ability of the eye to withstand lengthy exposure to excitation light, the effect of longer exposure times on total experiment time, and the necessity for following rapid physiological changes.

The minimum number of images necessary to produce acceptable oxygen maps was determined to be near 15. Using 15 intensity images at incremented phase delays produced fits comparable to those obtained using 30 images. Seven images proved to be too few, as the delineation between vessels in the oxygen maps grew faint.

It was not possible to determine the level of damage caused by experimentation using trypsin digestion. This histological technique did not allow for viewing of the capillary structure in sufficient detail to analyze damage to vessel walls. The inability to see any changes in the capillary structure in retinal vasculatures that are decisively damaged renders trypsin digestion an unacceptable method for study of the mouse eye.

Future Work

Additional *in vitro* calibration studies should be performed to explain the variation in instrument PO_2 readings for identical applied oxygen concentrations. While the calibration curve shows relatively good correlation between instrument and applied oxygen, additional experiments may identify areas for improvement. Some non-linearity in the calibration curve may be present, and must be accounted for.

Data from three individual mice (2a, 6a, and 7a) were not included in summary analyses due to inadequate physiological control during experimentation. Likely changes in blood pressure and respiration rate during the course of experiments caused variations in intensity images, and, hence, inadequate sine-wave fits and poor oxygen maps. Such problems may have been prevented by a physiological control system to monitor blood pressure, ensure adequate respiration, and continuously maintain level of anesthesia. Implementing such a system will increase efficiency of experiments by allowing for greater frequency of experimental success.

Experiments determining the threshold of accumulated energy deposition for damage to retinal blood vessels would be beneficial. In this study, no experiments were carried out in which damage to blood vessels occurred—all animals maintained blood vessel structure and oxygen levels. Determining the level of light exposure needed to cause damage would allow for recommendations for maximum light exposure levels to be made. Additionally, the issue of excitation light modulation frequency was not addressed. Changes in modulation frequency could cause significant changes in quality of oxygen maps, and should be investigated.

Further analysis of the number of images necessary for creating good quality oxygen maps would be beneficial. It was determined that seven images are too few for producing accurate maps when compared with results using 15 images; however, numbers between seven and 15 were not examined. Additional *in vivo* experiments using different image numbers would allow the determination of the absolute minimum number of images necessary for accurate maps, and possibly allow for a decrease in light exposure to animals during experiments.

As trypsin digestion proved to be an unacceptable method for histologically examining the mouse eye, other methods should be investigated. Changes in capillary structure are of particular interest in diabetic retinopathy, a disease whose first clinical signs manifest in these minute vessels. The lack of capillary definition in the photographs shown in Figure 4.5 makes it unlikely that trypsin digestion and PAS/Hematoxylin staining will be of use in further mouse model study. Laver et al [1993] confirm that while retinal mounts of the type used in this study demonstrate the microaneurysms present in diabetic retinopathy, they did not provide a clear view of the capillaries. They also claim that, even under ideal conditions, it is difficult to obtain good quality trypsin digestions of mouse retinas. Cuthbertson et al [1986] also verify this claim. Both of these studies recommend the use of elastase, rather than trypsin, for digesting the mouse retina. Analysis of eyes subjected to the phosphorescence lifetime imaging technique using elastase digestion and staining may be of benefit.

Conclusions

The specific aims for achieving the goal of optimization of the phosphorescence lifetime imaging system for the mouse eye were calibration of the system, determination of probe excitation parameters, determination of image collection and analysis parameters, and examination of microvascular damage using histology. Calibration was accomplished using an *in vitro* system to correlate instrument-derived oxygen tensions with known concentrations. Probe excitation parameters were studied indirectly through the determination of accumulated energy deposition during series of phosphorescence lifetime imaging experiments. Image collection and analysis parameters were studied in depth, with the final determination that lower intensifier gains produced better maps at lower signal-to-noise ratios, but higher gain settings allowed reasonably good maps to be created with shorter exposure times. Gain and exposure time settings for specific experiments may be determined using the graphs in Figure 4.8 as a guide. Seven was determined to be too few images for creating clear, precise oxygen maps—the number necessary is closer to fifteen. The aim of using histology to examine damage caused by probe excitation was not achieved, but recommendations for performing this procedure more effectively were made.

This work demonstrates that the phosphorescence lifetime imaging instrumentation and technique may be used for studying oxygen tensions in the mouse eye. The determination of the optimal parameters for conducting such experiments will allow for the investigation of how changes in retinal oxygen tensions correlate with the progression of numerous ocular diseases, such as diabetic retinopathy, retinopathy of prematurity, and glaucoma.

References

Aiello, L.P., T.W. Gardner, G.L. King, G. Blankenship, J.D. Cavallerano, F.L. Ferris, R. Klein. 1998. Diabetic Retinopathy. *Diabetes Care*, 21:143-156.

Aiello, L.P., E.A. Pierce, E.D. Foley, H. Takagaki, H. Chen, L. Riddle, N. Ferrara, G.L. King, and L.E.H. Smith. 1995. Suppression of retinal neovascularization *in vivo* by inhibition of vascular endothelial growth facto (VEGF) using soluble VEGF-receptor chimeric proteins. *Proceedings of the National Academy of Science, USA*, 92:10457-10461.

Alder, V.A., S.J. Cringle, and M. Brown. 1987. The effect of regional retinal photocoagulation on vitreal oxygen tension. *Ivestigative Ophthalmology and Visual Science*, 28:1078-1085.

Alder, V.A., S.J. Cringle, and I.J. Constable. 1983. The retinal oxygen profile in cats. *Investigative Ophthalmology and Visual Science*, 24:30-36.

Alder, V.A., E.N. Su, D.Y. Yu, S.J. Cringle, P.K. Yu. 1997. Diabetic retinopathy: Early functional changes. *Clinical and Experimental Pharmacology and Physiology*, 24:785-788.

Alm, A. and A. Bill. 1972. The oxygen supply to the retina, I. Effects of changes in intraocular and arterial blood pressures, and in arterial pO₂ and pCO₂ on the oxygen tension in the vitreous body of the cat. *Acta Physiologica Scandanavia*, 84:261-274.

Amin, R.H., R.N. Frank, A. Kennedy, D. Eliott, J.E. Puklin, G.W. Abrams. 1997. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. *Investigative Ophthalmology and Visual Science*, 38:36-47.

Andreani, D., G. Crepaldi, U. DiMario, G. Pozza. <u>Diabetic Complications: Early</u> <u>Diagnosis and Treatment.</u> 1987. Chichester: John Wiley & Sons, Inc.

Araki, E., M.A. Lipes, M.-E. Patti, J.C. Bruning, B. Haag, III, R.S. Johnson, and C.R. Kahn. 1994. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. *Nature*, 372:186-190.

Benson, W., G. Brown, W. Tasman. 1988. <u>Diabetes and its Ocular Complications</u>. Philadelphia: Harcourt Brace Jovanovich, Inc.

Berkowitz, B.A., R.A. Kowluru, R.N. Frank, T.S. Kern, T.C.Hohman, M. Prakash. 1999. Subnormal retinal oxygenation response precedes diabetic-like retinopathy. *Investigative Ophthalmology and Visual Science*, 40:2100-2105.

Crabbe, M.J.C. 1987. <u>Diabetic Complications: Scientific and Clinical Aspects</u>. London: Churchill Linvingstone.

Cuthbertson, R.A., T.E. Mandel. 1986. Anatomy of the mouse retina: Endothelial cellpericyte ratio and capillary distribution. *Investigative Ophthalmology and Visual Science*, 27:1659-1664.

Davison, J.K. 2000. <u>Clinical Diabetes Mellitus: A Problem-Oriented Approach</u>. New York: Thieme Medical Publishers, Inc.

Delori, F.C. 1988. Noninvasive technique for oximetry of blood in retinal vessels. *Applied Optics*, 27:1113-1125.

Diabetes Control and Complications Trial Research Group. 1998. Early worsening of diabetic retinopathy in the diabetes control and complications trial. *Archives of Ophthalmology*, 116:874-886.

Ditzel, J. and E. Standl. 1975. The problem of tissue oxygenation in diabetes mellitus I. Its relation to the early functional changes in the microcirculation of diabetic subjects. *Acta Medica Scandanavia*, 578 (Supplementum):49-58.

Dowling, J.E. <u>The Retina: An Approachable Part of the Brain.</u> 1987. Cambridge: The Belknap Press of Harvard University Press.

Ernest, J.T., T.K. Goldstick, and R.L. Engerman. 1983. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. *Investigative Ophthalmology and Visual Science*, 24:985-989.

Frank, R.N. 1991. On the pathogenesis of diabetic retinopathy: A 1990 update. *Ophthalmology*, 98:586-593.

Grunwald, J.E., C.E. Riva, J.Baine, and A.J. Brucker. 1992. Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. *Investigative Ophthalmology and Visual Science*, 33:356-363.

Grunwald, J.E., C.E. Riva, A.J. Brucker, S.H. Sinclair, and B.L. Petrig. 1984. Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. *Ophthalmology*, 91:1447-1452.

Grunwald, J.E., C.E. Riva, A.J. Brucker, S.H. Sinclair, and B.L. Petrig. 1986. Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinaopathy. *Ophthalmology*, 93:590-595.

Guillan, M.-T., E. Hummler, E. Schaerer, J.-Y. Wu, M.J. Birnbaum, F. Beerman, A. Schmidt, N. Deriaz, and B. Thorens. 1997. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. *Nature Genetics*, 17:327-330.

Hawes, N.L., R.S. Smith, B. Chang, M. Davisson, J.R. Hackenlively, S.W.M. John. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Molecular Vision, 5:22-29.

Inoue, S. and K.R. Spring. 1997. Video Microscopy: The Fundamentals, Second Edition. New York: Plenum Press.

Ito, Y. and B.A. Berkowitz. 2001. MR studies of retinal oxygenation. Vision Research, 41:1307-1311.

Kern, T.S., R.L. Engerman. 1995. Galactose-induced retinal microangiopathy in rats. Investigative Ophthalmology and Visual Science, 36:490-496.

Kern, T.S., R.L. Engerman. 1996. A mouse model of diabetic retinopathy. Archives of *Ophthalmology*, 114:986-990.

Kern, T.S., J. Tang, M. Mizutani, R.A. Kowluru, R.H. Nagara, G. Romeo, F. Podesta, M. Lorenzi. 2000. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: Comparison of diabetes and galactosemia. Investigative Ophthalmology and Visual Science, 41:3972-3978.

Kuwabara, T., D.G. Cogan. Studies of retinal vascular patterns: Part I, Normal architecture. 1960. Archives of Ophthalmology, 64:904-911.

Lakowicz, J.R. 1999. Principles of Fluorescence Spectroscopy, Second Edition. New York: Kluwer Academic/Plenum Publishers.

Lakowicz, J.R., and K.W. Berndt. 1991. Lifetime-selective fluorescence imaging using an rf phase-sensitive camera. Review of Scientific Instruments, 62:1727-1734.

Lakowicz, J.R., H. Szmacinski, K. Nowaczyk, K.W. Brerndt, and M. Johnson. 1992. Fluorescence lifetime imaging. Analytical Biochemistry, 202:316-330.

Laver, N.M., W.G. Robison, B.A. Pfeffer. 1993. Novel procedures for isolating intact retinal vascular beds from diabetic humans and animal models. *Investigative* Ophthalmology and Visual Science, 34:2097-2104.

Linsenmeier, R.A. 1986. Effects of light and darkness on oxygen distribution and consumption in the cat retina. Journal of General Physiology, 88:521-542.

Linsenmeier, R.A., R.D. Braun, M.A. McRipley, L.A. Padnick, J. Ahmed, D.L. Hatchell, D.S. McLeod, G.A. Lutty. 1998. Retinal hypoxia in long-term diabetic cats. Investigative Ophthalmology and Visual Science, 39:1647-1657.

Linsenmeier, R.A., L. Padnick-Silver. 2000. Metabolic dependence of photoreceptors on the choroids in the normal and detached retina. *Investigative Ophthalmology and Visual Science*, 41:3117-3123.

Linsenmeier, R.A. and C.M. Yancey. 1989. Effects of hyperoxia on the oxygen distribution in the intact cat retina. *Investigative Ophthalmology and Visual Science*, 30:612-618.

Lo, L.-W., C.J. Koch, and D.F. Wilson. 1996. Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra(4-carboxyphenyl) porphine: A phosphor with general application for measuring oxygen concentration in biological systems. *Analytical Biochemistry*, 236:153-160.

Molnar, I., S. Poitry, M. Tsacopoulos, N. Gilodi, and P.M. Leuenberger. 1985. Effect of laser photocoagulation on oxygenation of the retina in miniature pigs. *Investigative Ophthalmology and Visual Science*, 26:1410-1414.

Moses, R.A., Hart, W.A. 1987. <u>Adler's Physiology of the Eye: Clinical Applications</u>. St. Louis: The C.V. Mosby Company.

Patz, A. 1980. Studies on retinal neovascularization: Fiedenwald lecture. *Investigative Ophthalmology and Visual Science*, 19:1133-1138.

Pierce, E.A., R.L. Avery, E.D. Foley, and L.H. Smith. 1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model for retinal neovascularization. *Proceedings of the National Academy of Science, USA*, 92:905-909.

Sakagami, K., T. Kodama, D.G. Puro. 2001. PDGF-induced coupling of function with metabolism in microvascular pericytes of the retina. *Investigative Ophthalmology and Visual Science*, 42:1939-1944.

Sherwood, L. 2001. <u>Human Physiology: From Cells to Systems</u>. Pacific Grove, CA: Brooks/Cole.

Shonat, R.D. Personal communication. 1/15/01-4/1/01.

Shonat, R.D. and P.C. Johnson. 1997. Oxygen tension gradients and heterogeneity in the venous microcirculation: A phosphorescence quenching study. *American Journal of Physiology*, 272:H2233-H2240.

Shonat, R.D., K.N. Richmond, P.C. Johnson. 1995. Phosphorescence quenching and the microcirculation: An automated mutilpoint oxygen tension measuring instrument. *Review of Scientific Instruments.* 66:5075-5084.

Shonat, R.D., E.S. Wachman, W. Niu, A.P. Koretsky, D.L. Farkas. 1997. Nearsimultaneous hemoglobin saturation and oxygen tension maps in the mouse brain using an AOTF microscope. *Biophysical Journal*, 73:1223-1231.

Shonat, R.D., E.S. Wachman, W. Niu, A.P. Koretsky, D.L. Farkas. 1998. Nearsimultaneous hemoglobin saturation and oxygen tension maps in the mouse cortex during amphetamine stimulation. *Oxygen Transport to Tissue*, 20:149-158.

Shonat, R.D., D.F. Wilson, C.E. Riva, and S.D. Cranstoun. 1992. Effect of acute increases in intraocular pressure on intravascular optic nerve head tension in cats. *Investigative Ophthalmology and Visual Science*, 33:3174-3180.

Shonat, R.D., D.F. Wilson, C.E. Riva, M. Pawlowski. 1992. Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method. *Applied Optics*, 31:3711-3718.

Stefansson, E. 1990. Oxygen and diabetic eye disease. *Graefe's Archive of Clinical and Experimental Ophthalmology*, 228:120-123.

Stefansson, E., D.L. Hatchell, B.L. Fisher, F.S. Sutherland, and R. Machemer. 1986. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. *American Journal of Ophthalmology*, 101:657-664.

Stefansson, E. M.B. Landers, III, and M.L. Wolbarsht. 1981. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. *Transactions of the American Ophthalmological Society*, 79:307-334.

Stefansson, E., R.L. Novack, and D.L. Hatchell. 1990. Vitrectomy prevents retinal hypoxia in branch retinal vein occlusion. *Investigative Ophthalmology and Visual Science*, 31:284-289.

Stenbit, A.E., T.-S. Tsao, J. Lu, R. Burcelin, D.L. Geenen, S.M. Factor, K. Houseknecht, E.B. Katz, and M.J. Charron. 1997. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. *Nature Medicine*, 3:1096-1101.

Sussman, K.E., B. Draznin, W.E. James. 1987. <u>Clinical Guide to Diabetes Mellitus</u>. New York: Alan R. Liss, Inc.

Tamemoto, H., T. Kadowaki, K. Tobe, T. Yagi, H. Sakura, T. Hayakawa, Y. Terauchi, K. Veki, Y. Kaburagi, S. Satoh, H. Sekihara, S. Yoshioka, H. Horikoshi, Y. Furuta, Y. Ikawa, M. Kasuga, Y. Yazaki, and S. Alzawa. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. *Nature*, 372:182-186.

Terauchi, Y., K. Iwamoto, H. Tamenoto, K. Komeda, C. Ishii, Y. Kanazawa, N. Asanuma, T. Aizawa, Y. Akanuma, K. Yasuda, T. Kodama, K, Tobe, Y. Yazaki, and T. Kadowaki. 1997. Development of non-insulin-dependent diabetes mellitus in the double

knockout mice with disruption of insulin substrate-1 and β -cell glucokinase genes: Genetic reconstitution of diabetes as a polygenic disease. *The Journal of Clinical Investigation*, 99:861-866.

Vanderkooi, J.M. 1990. Fluorescence and Phosphorescence. Lecture notes, University of Pennsylvania, Philadelphia, PA.

Vanderkooi, J.M., G. Maniara, T.J. Green, and D.F. Wilson. 1987. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. *The Journal of Biological Chemistry*, 262:5476-5482.

Wachman, E.S., W.-H. Niu, and D.L. Farkas. 1996. Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution. *Applied Optics*, 35:5220-5226.

Watkins, P.J., P.L. Drury, S.L. Howell. 1996. <u>Diabetes and its Management</u>. Oxford: Blackwell Science, Ltd.

Wilson, D.F., A. Pastuszko, J.E. DiGiacomo, M. Pawlowski, R. Schneiderman, and M. Delivoria-Papadopoulos. 1991. Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. *Journal of Applied Physiology*, 70:2691-2696.

Withers, D.J., J.S. Gutierrez, H. Towery, D.J. Burks, J.M. Ren, S. Previs, Y. Zhang, D. Bernal, S. Pons, G.I. Shulman, S. Bonner-Weir, M.F. White. 1999. Disruption of IRS-2 causes type 2 diabetes in mice. *Nature*, 391:900-904.

Yamaoka, T., C. Nishimura, K. Yamashita, M. Itakura, T. Yamada, J. Fujimoto, and Y. Kokai. 1995. Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. *Diabetologia*, 38:255-261.

Yu, D.-Y. and S.J. Cringle. 2001. Oxygen distribution and consumption within the retina in vascularized and avascular retinas and in animal models of retinal disease. *Progress in Retinal and Eye Research*, 20:175-208.

Yu, D.-Y., S.J. Cringle, V. Alder, E.N. Su. 1999. Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia. *Investigative Ophthalmology and Visual Science*, 40:2082-2087.

Appendix A: Pd-Meso-Tetra (4-carboxyphenyl) Porphrine Probe Solution

- 1. Measure 50mg Pd-meso-tetra (4-carboxyphenyl) porphrine (Porphryin Products, Logan, UT) in a 1.5 ml microcentrifuge tube.
- 2. Add 500 µl 0.5N NaOH—probe dissolves in basic solution.
- 3. Warm under tap water until dissolved. Centrifuge.
- 4. Make a 1.25x albumin salt solution (25 ml)
 - a. Weigh 253.8 mg NaCl (FW = 58.44).
 - b. Add distilled/deionized water to 25 ml.
 - c. Pour salt water into a wide-mouth container, ad stirring rod and place on magnetic stir plate.
 - d. Add 1.88g albumin, bovine fraction V (Sigma, St. Louis, MO), taking care not to let the albumin touch the sides of the container.
 - e. Stir gently to dissolve (takes a few hours).
- 5. Slowly mix 4 ml albumin salt solution and all of the probe/NaOH solution.
- 6. Adjust pH to 7.4 with Tris(hydroxymethyl)aminomethane base (Aldrich Chemical Company, Milwaukee, WI) and HCl as needed. If albumin precipitates, pH is too low and Tris should be added.
- 7. Aliquot into 100 μ l portions and store at -20°C.
- 8. Final solution is Pd-porphyrin (10 mg/ml) in BSA (60 mg/ml) 0.9% NaCl (Shonat 2001).

Appendix B: "Retina" Program

The front panel of this program accepts as inputs τ_0 , k₀, modulation frequency and pulse time of excitation light, the name of the file containing the series of intensity images, and the number of intensity images to be used for fitting. It also allows the user to input a phase error, which is subtracted from the calculated phase delay, and a modulation error, which is divided into the calculated modulation. Averaging filters may be applied using the "Phos Filter" box. A region of interest (ROI) may then be selected within the intensity images, and a graph of phosphorescence intensity versus phase shift may be calculated and fit to the equation $I(\theta_D) = a_0 + a_1 \sin \theta_D + b_1 \cos \theta_D$. The parameters θ , τ , and $[PO_2]$ are calculated (see Background), and the fitting parameters k, m_D, m, and R² are also output. The program may also be used to create a number of maps using the intensity images, including PO_2 and R^2 maps. The mapping function also allows ROI selection, and outputs the mean, standard deviation, maximum, and minimum values within the ROL

📣 Interface - Retinal PO2 Analysis	
Image File:	Acquisition Parameters:
Filename: Gain100Exp0.315[Mod. Freq: 1600.0 (Hz)
Path: D:\Users\Kight\R Giet	Pulse: 312.50 (us)
	Delay Start: 5 (Hz)
Image File Statistics:	Delay Incr: 20 (us)
Size: 512 (x) × 512 (y) Number of Images: 15 (#)	PO2 Mapping
Data Type: 3 (0-3)	Probe: kQ: 381.0 (/mmHg/s)
Show Intensity Images	tau0: 637.0 (us)
	Phos Filter: 0 (0,1,)
Lies Div(vo) Div(deo)	Phase Err: 0.7569 (deg)
Image #: 1 _ 5.0 2.880	Mod Err: 0.6672 (0 - 1)
Update	Calculate Maps

Figure B.1—"Retina" front panel. Phosphorescence intensity image files are input using the "Get" button. Individual images used for graphing and mapping are selected at the bottom of the panel—in this particular case, image #1 is not selected. The mapping parameters may be input using the PC keyboard. Once all parameters are correct, the "Show Intensity Images" and "Calculate Maps" buttons may be used.

📣 Intensity -	- Retinal PO2 Analysis	X
	Phosphorescence First Back 5 Prev Next Fixed 5 Last I< << >	
	Current Image Number: 1 Maximum Intensity in Image: 2958 Minimum Intensity in Image: 128 Image Masking: Intensity Mask Maximum: 2958 Intensity Mask Minimum: 128	
	Recal Current ROI Define New ROI Graph Region	

Figure B.2—"Show Intensity Images" screen. Individual intensity images may be viewed using the buttons at the top of the screen. An ROI may be selected by pressing one of the buttons at the bottom, and using the mouse to define a region on the image—the ROI selected in this image appears in blue. A graph of intensity versus phase delay for the ROI may be created by pressing the "Graph Region" button.

Figure B.4—"Calculate Maps" screen. A number of different maps may be created using the pull-down menus at the top. Filtering parameters may be input to reduce extraneous pixels in the images. Statistics are output in the right center of the screen.

Appendix C: Procedure for Trypsin Digestion of the Retina

Note: All procedures should be performed in a clean, dust-free environment to prevent contamination of samples. Procedures on the eye and retina should be performed under a dissecting microscope when necessary.

- 1. Remove eyes from animal and fix in 10% buffered formalin for a minimum of 5 days and a maximum of 10-12 days. After 10-12 days, transfer eyes from the fixative into phosphate-buffered saline and store at 4°C.
- 2. Prepare trypsin digestion buffer:
 - a. Weigh out 18.2 g Tris base (MW 121).
 - b. Add approximately 800 ml deionized water.
 - c. Create a 0.2 M NaF (MW 42) solution using the following formula to determine the weight of NaF to be added:

42 x (volume of tris/water solution in L) x 0.2 = weight of NaF in grams

- d. Add this measured weight of NaF to the tris/water solution.
- e. Bring this solution to pH 7.8 using concentrated HCl.
- f. Store refrigerated.
- 3. Prepare trypsin digestion solution:
 - a. Weigh out 0.3 g crude trypsin 1:250 powder (it is absolutely necessary to use crude trypsin—pure trypsin will not digest the retina).
 - b. Add trypsin digestion buffer to make 10 ml. Shake or vortex to completely dissolve the trypsin in the buffer.
 - c. Centrifuge or filter the solution to remove the sediment.
 - d. Either make this solution fresh each day, or aliquot 5-10 ml portions and store frozen.
- 4. Transfer eyes to a 50-ml beaker of distilled water. Change the water once by carefully pouring the water out of the beaker (do not pour out the eyes), and refilling the beaker.
- 5. Place one eye in a petri dish filled with distilled water, and remove excess tissue from around the eyeball.
- 6. Place the eye in a sized tray to hold it in place, and use a razor blade to make a small initial cut just below the limbus, as indicated on the diagram below:

7. Beginning at the initial cut, use tweezers and scissors to completely remove the anterior segment from the eyes, leaving only a cup containing the retina:

- 8. Return the eye to the water-filled petri dish, and pop out the lens with a sweep of curved scissors or forceps.
- 9. Hold the sclera (the outside cup of the remaining eyeball) with a pair of forceps, and use curved scissors or forceps to carefully free the retina from the eye. Take care not to tear the retina during this process. The sclera may be cut to facilitate removal of the retina.
- 10. Use an appropriately sized piece of glass tubing with a pipet bulb on the end to aspirate the retina and transfer it to a 50-ml beaker of distilled water.
- 11. Allow the retina to soak for 1-2 hours, changing the water 4 or 5 times. Take care not to pour the retina down the drain when changing the water.

- 12. Transfer the retina to a glass test tube (NOT plastic—the retina will stick to it) using the Pasteur pipette, and remove the water with a dropper. Add 5-10 ml trypsin digestion solution to the test tube. Place the tube in a 37°C shaker water bath at 40-60 cycles per minute.
- 13. Allow the retina to digest for and hour and a half to an hour and forty-five minutes. Diseased or damaged retinas may take longer to digest. Avoid overdigestion-this will cause the vessels in the retina to fall apart. If under-digested, the retina may be returned to the trypsin solution for further digestion.
- 14. Transfer the retina to a petri dish of distilled water with the Pasteur pipette. Do not throw away the trypsin solution. Three layers of the retina should be visible: the jelly-like inner limiting membrane (which is clear, and may not be visible unless the petri dish is agitated), the clear/whitish vascular layer, and the tan photoreceptor layer. Grasp the inner limiting membrane with forceps, and use scissors to free it from the retina. The membrane will be sticky and difficult to deal with. Be sure all of this membrane is removed, and wipe it away from the forceps on a paper towel.
- 15. Use a Pasteur pipette with an eyelash cemented to the tip to beat the photoreceptors away from the retina. Use the curved surface of the eyelash, never the tip, as the tip may damage the blood vessels. Continue manipulating the retina with the eyelash to remove all cellular debris, frequently dipping the eyelash in the trypsin solution to prevent it from sticking to the retina.
- 16. Once all debris is removed, the vasculature will remain. It will be nearly transparent. Place a microscope slide in a separate petri dish, and fill the dish with enough water adequately cover the slide. Aspirate the retinal vessels and deposit them on the slide. Using the eyelash, carefully unfold the vessels and very gently press them onto the slide. If necessary, cut the vessels so they lie flat. Slowly remove the water from the petri dish using a peristaltic pump set a low speed.
- 17. Allow the vessels to air-dry overnight.
- 18. Mount and stain the retinas using the Procedure for Hematoxylin Staining of Trypsin Digests.

Appendix D: Procedure for Hematoxylin Staining of Trypsin Digests

- 1. After mounting retinas onto slides, allow to air-dry overnight.
- 2. Prepare periodic acid solution:
 - a. Weigh out 0.8 g reagent grade periodic acid.
 - b. Add 20 ml distilled water. Agitate to dissolve.
 - c. Add 10 ml 0.2M sodium acetate.
 - d. Add 70 ml 95% ethanol (66.5 ml EtOH + 3.5 ml water).
 - e. Swirl to mix. Make this solution fresh each day it is used. Store refrigerated when not in use.
- 3. Place slides in slide staining tray.
- 4. Stain the slides with the following solutions by using one reagent bottle for each step. Pour the reagent into the staining tray, allow to sit for the specified time, and then return the reagent to the bottle (except where specified).
 - a. 70% ethanol—5 minutes
 - b. Periodic acid solution—5 minutes
 - c. 70% ethanol, 3 changes (3 reagent bottles)-2 minutes each
 - d. Rinse in distilled water (discard water)
 - e. Schiff's reagent—25 minutes (Schiff's reagent is light sensitive. Place slides in a drawer or other dark area when soaking in this reagent.)
 - f. Running tap water—20 minutes
 - g. Hematoxylin—10 minutes (Hematoxylin is light sensitive. Place slides in a drawer or other dark area when soaking in this reagent)
 - h. Running tap water—20 minutes
 - i. 95% ethanol, 3 changes—2 minutes each
 - j. 100% ethanol, 3 changes—2 minutes each
 - k. Xylene, 3 changes—2 minutes each
 - 1. Drop Permount or Histoclad onto each stained retina and apply a cover glass.

Vessel walls will appear magenta, and nuclei will be blue.

Appendix E: Data Tables and Graphs

The following are Microsoft Excel spreadsheets used for analysis of data obtained during *in vivo* experiments. Data are organized by animal number and vessel type, and listed in the order images were taken. Map R^2 vs. SNR graphs were not created for Mouse 6a because the animal died during experimentation, and insufficient data were acquired at each gain setting to allow for statistical significance. The data from this mouse are not included in the summary graphs in the Results section. Additionally, data from Mice 2a and 7a are not included, as excessive head movement and drastic changes in the blood flow during image acquisition prevented the creation of satisfactory oxygen maps

Mouse1a		
---------	--	--

Gain		Exposure 7	Relative Irr Curr	nulativ	e Accumula	It SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St Dev
	100	0.06	1		1 4.54960	3.095793	31.3381	25 532	0 7126	0 1109
	100	0.06	2	2	2 9.09921	3 3.085443	33,1828	24 6421	0.7120	0.1108
	100	0.06	3	:	3 13.6488	2 3.108929	39 4319	29 6684	0.097	0.1190
	100	0.145	1	4	4 24.643	7 6 557214	37 3026	20.0004	0.7134	0.1140
	100	0.145	2	5	5 35,63858	3 6 222086	38 115	22.0202	0.0570	0.0617
	100	0.145	3	F	6 46 6334	5 941643	35 1657	20.4717	0.05	0.0649
	100	0.23	- 1	-	64 07363	8 02515	40 224	20.075	0.8547	0.0612
	100	0.23	2	, 2	81 51378	8 8 400721	40.231	22.1909	0.8975	0.0415
	100	0.23	2			0.409721	39.3985	21.5983	0.9058	0.0409
	100	0.315	1	10	122 820		37.6933	19.4958	0.9017	0.0428
	100	0 315	2	11	146 7049	11.70094	36.3694	16.1542	0.9314	0.0289
	100	0.315	2	10		11.11096	40.4209	20.7441	0.926	0.0333
	100	0.010	3	12	170.6102	10.66342	43.3651	19.3882	0.9297	0.0312
	100	0.4	1	13	200.9408	14.40799	37.0123	14.0576	0.9778	0.0252
	100	0.4	2	14	231.2/1/	14.19239	37.0853	14.4383	0.9456	0.0246
	70	0.4	3	10	261.6024	12.96509	39.713	17.0262	0.9426	0.0249
	70	0.15	1	16	272.9764	2.651029	47.847	30.1669	0.8315	0.0711
	70	0.15	2	1/	284.3504	2.6225	44.2218	28.1264	0.8433	0.0681
	70	0.15	3	18	295.7244	2.635986	39.0434	25.3113	0.8436	0.0667
	70	0.31	1	19	319.2307	4.325664	41.1906	20.8689	0.9089	0.0392
	70	0.31	2	20	342.737	4.196321	43.4629	22.788	0.9061	0.0389
	70	0.31	3	21	366.2433	4.317443	41.4235	22.1984	0.9092	0.0389
	70	0.47	1	22	401.8819	5.8495	41.7067	18.6205	0.9373	0.0283
	70	0.47	2	23	437.5205	5.606057	43.386	19.3558	0.9371	0.0266
	70	0.47	3	24	473.1591	5.777164	43.5985	20.2452	0.9367	0.0277
	70	0.63	1	25	520.9299	7.105086	44.4771	17,7629	0.9491	0.0221
	70	0.63	2	26	568.7008	6.995464	46.1181	20.8784	0 9474	0.0221
	70	0.63	3	27	616.4717	7.332793	47.8064	19 0871	0.9513	0.0210
	70	0.79	1	28	676.3748	8.517693	46.3823	17 9728	0.0010	0.0203
	70	0.79	2	29	736.278	8.327271	46 9208	20 5558	0.000	0.0173
	70	0.79	3	30	796,1811	8 581879	41 7116	15 173	0.0580	0.0103
	40	0.32	1	31	820 4457	2,3966	42 0659	24 4672	0.9309	0.0173
	40	0.32	2	32	844 7102	2 461529	44 1880	29.9072	0.0047	0.0493
	40	0.32	3	33	868 9748	2 430371	47.2164	20.0001	0.0000	0.0484
	40	0.49	1	34	906 1299	3 124143	41 2365	20.4007	0.0074	0.0481
	40	0.49	2	35	943 285	3 148657	41.2303	20.0011	0.9193	0.0359
	40	0.49	- 3	36	980 4402	3 011221	40.0152	24.2920	0.9178	0.0346
	40	0.66	1	37	1030 486	3 724002	40.4090	20.0742	0.9182	0.0351
	40	0.66	2	38	1080 531	3 975071	40.0022	22.1523	0.951	0.0285
	40	0.66	2	30	1130 577	2 704214	43.3004	18.7779	0.9388	0.0255
4	40	0.83	1	40	1102 512	3.704214	45.9238	20.9077	0.9352	0.0282
	10	0.00	2	40	1056 45	4.3204	47.9599	20.8675	0.9482	0.0235
	10	0.00	2	41	1200.40	4.359643	44.7594	21.14/4	0.9464	0.0231
-	10	0.03	3	42	1319.386	4.439157	45.2842	19.3097	0.9476	0.0228
-	10	1	1	43	1395.213	5.221529	45.1115	18.2914	0.9558	0.0199
	+U 10	1	2	44	14/1.039	5.075257	42.44	16.2557	0.9535	0.0196
-			3	45	1546.866	5.1926	44.0404	18.0572	0.9561	0.019
		0.4	1	46	1577.197	1.826257	42.2584	24.6142	0.8597	0.0586
	0	0.4	2	47	1607.528	1.8781	44.597	26.6512	0.8703	0.0548
1	0	0.4	3	48	1637.858	1.867364	45.5887	27.2643	0.8593	0.0611
1	0	0.55	1	49	1679.563	2.143657	43.8342	22.756	0.9022	0.0408
1	0	0.55	2	50	1721.268	2.144786	38.2199	19.6557	0.9008	0.0416
1	0	0.55	3	51	1762.972	2.13575	42.8878	23.885	0.8968	0.0432
1	0	0.7	1	52	1816.051	2.370264	42.3321	21.2545	0.9146	0.0377
1	0	0.7	2	53	1869.13	2.490007	40.5599	21.3576	0.9205	0.0334
1	0	0.7	3	54	1922.209	2.416929	44.4406	21.3127	0.9176	0.0351
1	0	0.85	1	55	1986.661	2.640707	43.8111	21.1277	0.9287	0.0305
1	0	0.85	2	56	2051.114	2.756536	41.6892	19.7134	0.9286	0.0303
1	0	0.85	3	57	2115.567	2.802221	43.3271	20.2275	0 9296	0.0308
1	0	1	1	58	2191.394	3.005229	43.5173	20.1546	0.9393	0.0267
1	0	1	2	59	2267.22	3.105014	45.124	19.5174	0.9392	0.0207
1	0	1	3	60	2343.047	2.921743	46.1122	20.9077	0.9368	0.0200
									3.0000	0.0200

Mouse1a

Gain	Exposure ⁻	Relative Irr Cur	nulativ	e Accumula	at: SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St Dev
100	0.06	1	1	4.54960	6 2.114821	39.6745	29 2787	0.6522	0 1285
100	0.06	2	2	9.09921	3 2.18555	40.0248	30 7703	0.6784	0.1203
100	0.06	3	3	13.6488	2 2.132386	38 1474	29 1068	0.6672	0.1227
100	0.145	1	4	24.643	7 4.135036	47 0121	26,6557	0.0072	0.1207
100	0.145	2	5	35.6385	3 3 961 193	50 7693	28.0704	0.0224	0.0074
100	0.145	3	6	46 6334	3 781429	45 7580	20.0794	0.0212	0.0728
100	0.23	1	7	64 0736	5 706303	43.7309	21.0302	0.8271	0.0678
100	0.23	2	, 8	81 5137	S 5 5 6 6 7 5	47.04ZZ	24.6418	0.8838	0.0517
100	0.23	3	0 0	08.0530	5 5.0075	50,100	27.2305	0.8808	0.0527
100	0.315	1	10	122 820	+ 0.010040	50.132	27.91	0.8838	0.0496
100	0.315	2	10	146 7049	+ 7.140730	54.7994	26.7813	0.9127	0.0367
100	0.015	2	11	140.7240	0.089557	45.6133	22.3398	0.9061	0.0425
100	0.010	1	12	170.0102	0.84275	53.9341	28.3479	0.9082	0.0406
100	0.4	1	13	200.9405	8.358679	52.4021	24.9794	0.9206	0.0339
100	0.4	2	14	231.2717	8.287757	47.7886	24.5135	0.9293	0.03
70	0.4	3	15	261.6024	8.137771	51.3911	22.8888	0.9238	0.0354
70	0.15	1	16	272.9764	1.956836	49.7236	30.6369	0.7933	0.0876
70	0.15	2	17	284.3504	2.010964	49.6578	29.4232	0.7997	0.0844
70	0.15	3	18	295.7244	1.907214	49.0474	30.8991	0.7826	0.0909
70	0.31	1	19	319.2307	3.046629	47.4786	25.4282	0.8859	0.0464
70	0.31	2	20	342.737	3.05295	55.3046	29.7117	0.8839	0.0535
70	0.31	3	21	366.2433	2.8612	53.6004	28.1099	0.8794	0.0496
70	0.47	1	22	401.8819	4.10985	55.3252	27.091	0.9201	0.0345
70	0.47	2	23	437.5205	3.877786	55.4945	27.3316	0 9197	0.0359
70	0.47	3	24	473.1591	3.758521	52.6991	26,1164	0.9123	0.0397
70	0.63	1	25	520.9299	4.792414	57.5879	25,8847	0.9333	0.0007
70	0.63	2	26	568.7008	4.745214	53,3979	26 6935	0.0000	0.0207
70	0.63	3	27	616.4717	4.660943	58.5217	25 3551	0.0074	0.0205
70	0.79	1	28	676.3748	5.870486	58,8598	24 5303	0.0002	0.0233
70	0.79	2	29	736.278	5.816621	61 0782	27 4807	0.0401	0.024
70	0.79	3	30	796,1811	5 4385	51 7926	22 0157	0.9457	0.0250
40	0.32	1	31	820.4457	1 861457	48 0736	27 1763	0.9434	0.0249
40	0.32	2	32	844,7102	1 979321	53 192	20 1/65	0.0527	0.0637
40	0.32	3	33	868 9748	1 989986	55 0282	20.5722	0.8037	0.0571
40	0.49	1	34	906 1299	2 353907	51 4006	20.3722	0.0079	0.0615
40	0.49	2	35	943 285	2 353586	50,2062	20.2700	0.0965	0.0459
40	0.49	3	36	980 4402	2.325614	53.2002	30.1020	0.9001	0.0429
40	0.66	1	37	1030 486	2.323014	55.1006	27.410	0.8982	0.0471
40	0.66	2	38	1080.400	2.0002	50.005	27.771	0.9191	0.035
40	0.66	2	30	1000.551	2.794007	54.8396	25.4769	0.9208	0.0351
40	0.83	1	40	1102 512	2.702571	57.9637	27.121	0.9205	0.0344
40	0.00	2	40	195.515	3.196864	58.3452	26.2303	0.9365	0.0274
40	0.00	2	41	1200.40	3.124921	54.3426	25.1233	0.9312	0.028
40	0.00	1	42	1319.300	3.185336	57.3821	25.6143	0.9399	0.0309
40	1	1	43	1395.213	3.765514	57.7478	24.1372	0.9435	0.0244
40	1	2	44	14/1.039	3.648779	55.7926	25.5267	0.9433	0.0256
40	0.4	3	45	1546.866	3.659643	54.3109	29.2702	0.9431	0.0252
10	0.4	1	46	15/7.197	1.525221	45.3989	26.9337	0.8276	0.0683
10	0.4	2	47	1607.528	1.564357	44.8093	26.6422	0.8318	0.0717
10	0.4	3	48	1637.858	1.519693	48.6575	28.3567	0.8315	0.0718
10	0.55	1	49	1679.563	1.778971	50.9847	26.245	0.88	0.0498
10	0.55	2	50	1721.268	1.78155	45.0981	25.7877	0.8759	0.0543
10	0.55	3	51	1762.972	1.716043	48.5902	26.9661	0.8632	0.0565
10	0.7	1	52	1816.051	1.902929	52.3737	26.1536	0.8964	0.0442
10	0.7	2	53	1869.13	1.889071	55.0306	29.0283	0.8917	0.0487
10	0.7	3	54	1922.209	1.91365	55.2284	28.9121	0.891	0.046
10	0.85	1	55	1986.661	2.104971	53.2896	36.4084	0.9117	0.038
10	0.85	2	56	2051.114	2.1586	54.2392	27.1513	0.912	0.0382
10	0.85	3	57	2115.567	2.098914	52.8082	25.88	0.9059	0.0394
10	1	1	58	2191.394	2.315486	56.5722	26.3641	0.923	0.033
10	1	2	59	2267.22	2.287979	52.437	25.3322	0.9196	0.0343
10	1	3	60 3	2343.047	2.293014	56.1862	27.8662	0.9216	0.0327

Mouse1a

Gain		Exposure 7	Relative In Cun	nulativ	e Accumula	t SNR	PO2 Mean	PO2 St De	R2 Mean	R2 St Dev
	100	0.06	1		1 4.549606	1.543421	40.7296	32,7735	0.5973	0 1516
	100	0.06	2	2	2 9.099213	1.662514	37,6693	29 7527	0.6174	0.1510
	100	0.06	3	3	3 13.64882	1.627964	41 0929	31 8999	0.0174	0.1511
	100	0.145	1	4	4 24.6437	2.570714	54 8134	30.8204	0.000	0.1545
	100	0.145	2	5	5 35.63858	2 604886	53 5213	20 5081	0.7635	0.0935
	100	0.145	3	e	6 46 63346	2 6328	49 7470	29.0901	0.7701	0.0881
	100	0.23	1	7	64.07362	3 561721	53 1262	28 7822	0.7937	0.0862
	100	0.23	2	ع	81 51378	3 633271	57 0677	20.7027	0.8444	0.069
	100	0.23	3	c	98 95394	3 544707	50.0760	30.3669	0.8496	0.0662
	100	0.315	1	10	122 8304	1 515664	59.0769	32.1188	0.851	0.0628
	100	0.315	2	11	146 7249	4.010004	50.0034	29.9211	0.888	0.052
	100	0.315	2	10	140.7240	4.442021	58.5357	30.2162	0.8795	0.049
	100	0.010	1	12	200.0400	4.40/404	60.8815	28.4017	0.8809	0.0531
	100	0.4	2	14	200.9409	5.443357	60.3867	29.2909	0.9023	0.0411
	100	0.4	2	14	231.2717	5.309457	61.9574	28.766	0.9032	0.0427
	70	0.4	1	10	201.0024	4.96845	65.4685	29.9226	0.8998	0.0439
	70	0.15	1	10	272.9764	1.587336	52.0365	30.546	0.7576	0.1023
	70	0.15	2	17	284.3504	1.568971	52.5013	34.5642	0.7532	0.0995
	70	0.15	3	18	295.7244	1.606071	45.6005	29.0918	0.7527	0.1016
	70	0.31	1	19	319.2307	2.223664	54.2106	30.5602	0.8551	0.0608
	70	0.31	2	20	342.737	2.26285	62.4493	33.3083	0.8468	0.064
	70	0.31	3	21	366.2433	2.201386	60.29	31.7032	0.8442	0.0645
	70	0.47	1	22	401.8819	2.880686	65.3519	30.0085	0.9028	0.0396
	70	0.47	2	23	437.5205	2.77385	62.2263	30.2084	0.8926	0.0479
	70	0.47	3	24	473.1591	2.717093	58.6863	30.1501	0.889	0.0499
	70	0.63	1	25	520.9299	3.460143	61.9075	30.1302	0.9176	0.0351
	70	0.63	2	26	568.7008	3.444807	63.4104	29.7229	0.9127	0.0368
	70	0.63	3	27	616.4717	3.457171	65.4113	31.0919	0.9157	0.0398
	70	0.79	1	28	676.3748	4.215021	68.0487	28.6898	0.9333	0.0293
	70	0.79	2	29	736.278	4.029407	59,1901	28.651	0.9304	0.0200
	70	0.79	3	30	796.1811	3.995114	61.517	27,6931	0.9338	0.0283
	40	0.32	1	31	820.4457	1.570479	52,3609	32 2871	0.8108	0.0203
	40	0.32	2	32	844.7102	1.650093	54 7581	31 4585	0.8286	0.0707
	40	0.32	3	33	868.9748	1.6226	56 8063	31 2012	0.0200	0.0743
	40	0.49	1	34	906,1299	1.858329	56 5369	28 9186	0.8616	0.0797
	40	0.49	2	35	943,285	1 845286	59 1537	31 1602	0.0010	0.0565
	40	0.49	3	36	980 4402	1 850293	64 1368	34.0511	0.0031	0.0578
	40	0.66	1	37	1030 486	2 184370	57 325	29 900	0.8749	0.0543
	40	0.66	2	38	1080 531	2 10 407 3	61 5227	20.099	0.0940	0.0491
	40	0.66	3	39	1130 577	2 13385	62 4736	29.0273	0.8943	0.0453
	40	0.83	1	40	1103 513	2.10000	64 2222	29.4271	0.8974	0.0447
	40	0.83	2	40	1256 45	2.341079	62 1062	29.4555	0.9131	0.0376
	40	0.83	3	42	1310 386	2.330021	62,1003	29.1446	0.9124	0.038
	40	1	1	13	1305 212	2.373079	03.0200	29.727	0.9133	0.0364
4	40	1	2	11	1471 020	2.732914	63.4927	28.0271	0.9285	0.0305
4	10	1	2	44	1471.039	2.000343	62.8859	28.4/13	0.927	0.032
	10	04	1	40	1540.000	2.671571	64.0949	28.9529	0.926	0.0324
	10	0.4	י ר	40	1577.197	1.334821	46.6725	29.0297	0.7481	0.1081
		0.4	2	47	1607.528	1.34/264	49.6254	31.4275	0.7758	0.0894
		0.4	3	48	1637.858	1.355986	53.3671	31.4607	0.7611	0.1009
		0.55	1	49	1679.563	1.471607	55.9165	32.442	0.8148	0.0753
	0	0.55	2	50	1721.268	1.474186	56.8763	31.7184	0.8143	0.0785
1	0	0.55	3	51	1762.972	1.453136	53.0637	30.3818	0.8081	0.081
1	0	0.7	1	52	1816.051	1.574557	56.8056	31.7091	0.8441	0.0659
1	0	0.7	2	53	1869.13	1.569671	59.5999	33.0134	0.853	0.0636
1	0	0.7	3	54	1922.209	1.570557	55.8152	30.5754	0.8441	0.0663
1	0	0.85	1	55	1986.661	1.680764	60.2966	32.5642	0.8739	0.0526
1	0	0.85	2	56	2051.114	1.738907	59.0788	31.2603	0.8758	0.0534
1	0	0.85	3	57	2115.567	1.687836	65.1215	32.3143	0.8713	0.0565
1	0	1	1	58	2191.394	1.832129	58.8416	31,6698	0.8893	0 0477
1	0	1	2	59	2267.22	1.797793	64.9821	32,1015	0.8885	0.0492
1	0	1	3	60	2343.047 [·]	1.839357	60.7875	30.033	0.8919	0.0466
							· · -		5.0010	3.0400

Mouse2a

Gain	Exposure	Relative Irr Curr	nulativ	e Accumula	t SNR	PO2 Mean	PO2 St De	R2 Mean	P2 St Day
10) 1	1	1	76.65354	4 2.565329	56,9668	24 9118		0.0242
10) 1	2	2	2 153.307	1 2.622014	53 4213	23 5368	0.9447	0.0243
10) 1	3	3	3 229,9606	2.590086	55 6758	22,0000	0.95	0.0210
10	0.85	1	4	295.116	2.376264	56 7692	25 3674	0.940	0.0235
10	0.85	2	5	5 360.2717	2.363529	55 7959	25 8445	0.350	0.0270
10	0.85	3	6	425.4272	2.358593	55 0178	25.0445	0.9350	0.0279
10	0.7	1	7	479.0846	2 24505	39 2874	20.472	0.9351	0.0274
10	0.7	2	8	532.7421	2 746029	92 0308	20.0707	0.9004	0.0397
10	0.7	3	g	586,3996	2 2328	67 21/8	29.2017	0.9000	0.018
10	0.55	1	10	628,5591	2 042814	30 059	20.7029	0.9520	0.0286
10	0.55	2	11	670.7185	2 0484	57 4077	22.1440	0.7525	0.0931
10	0.55	3	12	712.878	1 891586	77 4367	24.3072	0.9279	0.0305
10	0.4	1	13	743.5394	1 645614	61 6264	30,6050	0.9144	0.0374
10	0.4	2	14	774 2008	1 620443	57 0768	30.0959	0.0999	0.0441
10	0.4	3	15	804 8622	1 912464	95 5203	30.1209	0.000	0.0619
40	1	1	16	881 5157	3 214429	63 08/1	26 6100	0.9237	0.032
40	1	2	17	958 1693	3 45935	32 5002	20.0199	0.9475	0.0234
40	1	3	18	1034 823	3 412014	73 3564	20.3039	0.0099	0.0851
40	0.83	1	19	1098 445	2 8844	10 1291	20.0007	0.9513	0.0209
40	0.83	2	20	1162 068	2 887443	64 6246	0.4020	0.9011	0.0376
40	0.83	3	21	1225 69	2.007443	25 0474	29.1275	0.9263	0.0313
40	0.66	1	22	1276 281	2.070400	55.0474	20.3473	0.8429	0.0602
40	0.66	2	23	1326 873	2.031079	57 4700	20.3074	0.9312	0.0313
40	0.66	3	20	1320.073	2.039107	57.4792	30.4785	0.8298	0.069
40	0.49	1	25	1/15 02/	2.700040	42.3912	26.1678	0.8109	0.0773
40	0.49	2	20	14152 585	2.103493	50.1517	28.2674	0.9009	0.0429
40	0.49	3	20	1400 145	2.111595	31.7200	28.3655	0.89	0.0468
40	0.32	1	28	1514 674	1 75465	23.1599	8.9142	0.8924	0.0369
40	0.32	2	20	1530 202	1.70400	55.9479	31.176	0.8513	0.0649
40	0.32	2	20	1563 722	1.703904	53.4429	30.3767	0.8514	0.0646
70	0.79	1	31	1624 280	1.743214	23.3338	30.6464	0.8398	0.0682
70	0.79	2	32	1684 845	5.00057	17.0831	29.6504	0.9282	0.0283
70	0.79	2	32	1745 401	5.0259	49.4505	20.1898	0.9477	0.0242
70	0.73	1	34	1745.401	0.0309/9 E 04005	97.367	27.0013	0.9225	0.0348
70	0.00	2	25	1793.093	5.04235	/5.6431	31.7865	0.908	0.0406
70	0.00	2	26	1041.900	5.0521	74.589	32.8444	0.8976	0.0434
70	0.00	1	27	1090.270	4.505064	46.0104	21.0133	0.9333	0.0295
70	0.47	י ר	20	1920.304	3.751429	81.8249	30.4107	0.9306	0.0293
70	0.47	2	30	1902.331	3.547986	47.2302	27.093	0.835	0.0722
70	0.47	1	39	1990.300	3.389336	58.1711	28.1642	0.9146	0.0351
70	0.31	2	40	2022.12	3.027236	43.48/3	28.8962	0.7554	0.1014
70	0.31	2	41	2045.063	2.573493	62.3756	30.7723	0.8782	0.0545
70	0.01	1	42	2009.040	2.001043	58.4532	30.3622	0.8737	0.0558
70	0.15	- -	43	2001.144	1.758207	48.6087	31.8396	0.7462	0.0987
70	0.15	2	44	2092.642	1.692293	48.6453	31.4387	0.7737	0.0954
100	0.15	3	40	2104.14	1.83745	39.4355	29.1474	0.6785	0.1289
100	0.4	1	40	2134.801	6.696186	26.3566	17.8298	0.7967	0.0794
100	0.4	2	47	2105.403	6.508757	58.8378	31.5043	0.8644	0.0625
100	0.4	3 1	40	2196.124	6.120893	52.869	26.7578	0.9158	0.0384
100	0.315	1	49	2220.27	5.011457	55.1505	28.8766	0.8759	0.0542
100	0.315	2	50	2244.416	5.743014	53.4063	28.1759	0.8827	0.0525
100	0.315	3	51	2268.562	5.225079	62.1295	30.7703	0.8792	0.0549
100	0.20	1	52	2200.192	4.013893	46.8359	25.9023	0.8547	0.0613
100	0.20	2	つ づ	2303.822	4.424657	52.9312	27.955	0.8644	0.0623
100	0.23	3	54 57	2321.453	4.059786	42.847	25.2951	0.8506	0.0644
100	0.140	1	55	2332.56/	3.009921	38.769	28.2024	0.6833	0.1238
100	0.140	2	50 57	2343.682	3.129836	58.433	33.2484	0.8073	0.0815
100	0.140	3	5/	2354.797	2./23236	30.3368	24.683	0.74	0.1022
100	0.00	1	58	2359.396	1.739021	42.4631	31.2443	0.6594	0.1363
100	0.00	2	59	2303.995	1.699414	42.0059	29.2385	0.6642	0.1333
100	0.06	3	60	2368.594	1.658679	43.2512	30.8114	0.6386	0.1328

Mouse 2a Vein

Mouse2a

Gain	Expo	osure [·]	Relative Irr Cu	umulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
1	0	1	1	1	76.65354	1.963171	63.843	29.4655	0.9319	0.0334
1	10	1	2	2	153.3071	1.970014	61.5025	28.009	0.9319	0.0294
1	0	1	3	3	229.9606	1.980893	64.4603	28.7177	0.9297	0.0301
1	0	0.85	1	4	295.1161	1.826357	61.2324	28.6511	0.9138	0.0395
1	0	0.85	2	5	360.2717	1.757036	64.7109	31.0928	0.9145	0.0391
1	0	0.85	3	6	425.4272	1.749129	57.5263	28.2588	0.9024	0.042
1	0	0.7	1	7	479.0846	1.736929	47.6373	27.9232	0.8744	0.0516
1	0	0.7	2	8	532.7421	1.971564	75.9263	30.7795	0.926	0.0305
1	0	0.7	3	9	586.3996	1.8108	69.1917	30.4249	0.9097	0.0376
1	0	0.55	1	10	628.5591	1.656264	27.2656	18.3756	0.7847	0.0887
1	0	0.55	2	11	670.7185	1.727229	73.8256	29.2442	0.9187	0.0346
1	0	0.55	3	12	712.878	1.616386	72,7801	34.0154	0.8799	0.0496
1	0	0.4	1	13	743.5394	1.438093	61.8509	32 7413	0.8674	0.0558
1	0	0.4	2	14	774.2008	1.418757	52,8608	31 4433	0.8061	0.0821
1	0	0.4	3	15	804.8622	1.574	79.0714	30 4531	0.8867	0.0021
4	0	1	1	16	881.5157	2.970529	72,7498	28 3305	0.0007	0.047
4	0	1	2	17	958,1693	3.31735	38 8248	20 5448	0.8827	0.0201
4	0	1	3	18	1034.823	3.251086	78 7902	28 1636	0.0027	0.040
4	0	0.83	1	19	1098.445	2 882536	32 1917	11 8850	0.0020	0.0214
4	0	0.83	2	20	1162 068	2 758043	73 5797	30 5994	0.322	0.0301
4	0	0.83	3	21	1225 69	2 793179	31 0872	13 675	0.9525	0.029
4	0	0.66	1	22	1276 281	2 476057	72 8878	28 9564	0.0340	0.0421
4	0	0.66	2	23	1326 873	2 701136	60 6730	20.9504	0.9313	0.0293
4	0	0.66	3	24	1377 464	2 559514	41 5109	23 7744	0.0071	0.0593
4	0	0.49	1	25	1415 024	2.000014	67 8125	23.7744	0.0004	0.0597
4	0	0.49	2	26	1452 585	2.045021	58 3650	28 0462	0.9010	0.0413
4	0	0.49	3	27	1490 145	2 285964	54 8258	20.9402	0.0979	0.0445
4	0	0.32	1	28	1514 674	1 694479	60.0485	20.417	0.9009	0.0379
4	0 0	0.32	2	20	1539 203	1.034473	56 4629	20 6659	0.0042	0.0575
4	0 0	0.32	3	30	1563 732	1 680043	50 1927	30.0000	0.0074	0.0563
7	0 0	0.79	1	31	1624 289	5 278086	40 2074	31.2040	0.0021	0.0619
7	0	0.79	2	32	1684 845	1 63085	49.307 T	21.111	0.9470	0.0222
7	0 0	0.79	2	33	1745 401	5 500470	00 2124	20.0047	0.9407	0.0223
7	0 0	0.63	1	34	1793 693	1 368014	39.3124 77.0465	29.9200	0.9209	0.0336
7	n	0.63	2	35	1841 085	4.500914	11.0403	30.174	0.9046	0.0406
7(n	0.63	2	36	1800 276	4.006920	00.0403 55.0467	20.07	0.909	0.0376
7(n	0.00	1	37	1030.270	4.000029	33.9407 70.7066	20.4203	0.9319	0.0305
7(n n	0.47	2	38	1920.304	2 212107	79.7900	30.2494	0.9221	0.0347
7(- n	0.47	2	30	1902.331	3.213107	52.5233	28.9354	0.8488	0.0645
7(ן ר	0.31	1	40	2022 12	2 520514	47 104	31.7135	0.9181	0.0341
7(ן ר	0.31	2	40	2022.12	2.029014	47.124	29.2947	0.803	0.0815
70	ן ר	0.31	2	40	2045.005	2.309407	61.6032	29.3746	0.8/4/	0.0538
70	ן ר	0.01	1	42	2009.040	2.570500	40 8012	32.3631	0.8657	0.0531
70	, ,	0.15	2	40	2001.144	1.030100	49.0913	31.4153	0.7378	0.1028
70	ן ר	0.15	2	44	2092.042	1.013304	01.4040 42.5007	31.0505	0.769	0.0927
100	, ,	0.10	1	40	2104.14	F 40425	43.3997	29.3534	0.6996	0.1236
100	5	0.4	2	40	2134.001	5.40435	28.3451	17.7348	0.8587	0.0608
100	, ר	0.4	2	4/	2105.403	5.701907	60.764	30.1634	0.8687	0.0562
100	, , ,	0.4	3	40	2196.124	5.4807	60.1958	29.8244	0.9133	0.0391
100		1.010	1	49	2220.27	4.58965	62.6501	29.3963	0.8648	0.0601
100		1.010	2	50	2244.416	4.936957	55.0361	2930209	0.8781	0.0504
100	, L)	0.010	С 1	51	2200.502	4./3485/	62.9092	32.8323	0.8807	0.0518
100	,)	0.20	1	52	2200.192	3.0322/9	53.7823	28.3964	0.8548	0.0645
100	,)	0.20	2	53	2303.822	4.102021	05.5374	32.4188	0.8657	0.0587
100	,) ^	0.23	J ⊿	54 57	2321.453	3.045/79	48.3405	27.1014	0.8537	0.0637
100		140 145	1	55	2332.567	2.694007	42.7271	30.2718	0.7046	0.121
100		140	2	56	2343.682	2.780236	58.3201	32.3686	0.8011	0.0831
100	, 0	0.00	ک	5/	2354.797	2.50/897	34.3168	23.7818	0.7796	0.0878
100	,	0.00	1	58	2359.396	1.62135	44.0424	32.2331	0.6346	0.1314
100		0.00	2	59	2303.995	1.6164	47.7245	33.0723	0.6695	0.1414
100	1	0.06	3	60	2368.594	1.578414	44.4237	31.7052	0.6199	0.1388

Mouse 2a Artery

Mouse2a

Gain		Exposure 7	Relative Im	Cumulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
	10	1	1	1	76.65354	1.458314	76.3928	30.9213	0.8919	0.00473
	10	1	2	2	153.3071	1.528507	72.135	30.5176	0.9012	0.0432
	10	1	3	3	229.9606	1.4857	73.9111	30.829	0.8955	0.0461
	10	0.85	1	4	295.1161	1.425407	72.9266	31.6653	0.8771	0.0541
	10	0.85	2	5	360.2717	1.432193	73.0667	32.1045	0.8766	0.0542
	10	0.85	3	6	425.4272	1.418893	74.2351	32.7031	0.8701	0.0516
	10	0.7	1	7	479.0846	1.385064	65.1099	32.3446	0.8306	0.0722
	10	0.7	2	8	532.7421	1.4625	80.9474	32.5748	0.8851	0.0501
	10	0.7	3	9	586.3996	1.408657	69.6301	31.3032	0.8632	0.055
	10	0.55	1	10	628.5591	1.342364	53.9505	32,1208	0.768	0.0982
	10	0.55	2	11	670.7185	1.341036	66.7429	32,5805	0.8476	0.0625
	10	0.55	3	12	712.878	1.338143	70.899	33,1039	0.8324	0.0706
	10	0.4	1	13	743.5394	1.2339	59,7068	33.1784	0.7763	0.0936
	10	0.4	2	14	774.2008	1.233364	59.2788	35 4172	0 7465	0 1072
	10	0.4	3	15	804.8622	1.260157	68,7388	35 0929	0 788	0.0875
	40	1	1	16	881.5157	1.973564	73 4267	31 1712	0 9035	0.0010
	40	1	2	17	958,1693	2.041386	57 9837	29 3012	0.8502	0.063
	40	1	3	18	1034.823	2.030379	73 7586	33 0437	0.9045	0.000
	40	0.83	1	19	1098 445	1 871243	47 8317	26 6129	0.8726	0.0400
	40	0.83	2	20	1162 068	1 813829	67 9583	32 4025	0.0720	0.0549
	40	0.83	- 3	21	1225.69	1 8553	55 6266	31 0701	0.8505	0.0049
	40	0.66	1	22	1276 281	1 704507	63 7792	32 1048	0.0000	0.0000
	40	0.66	2	23	1326 873	1 744179	58 1/61	33 0262	0.0005	0.0002
	40	0.66	3	20	1377 464	1 743043	52 1210	30 16202	0.0033	0.0797
	40	0.00	1	25	1415 024	1.743043	55 7074	30.0014	0.0007	0.079
	40	0.40	2	26	1452 585	1 515057	56 6100	31 4221	0.0200	0.0722
	40	0.40	2	20	1402.000	1.513537	53 8205	30.0405	0.0242	0.0715
	40	0.40	1	27	1514 674	1 3460	54 0206	30.9495	0.037	0.0671
	40	0.32	2	20	1530 203	1 3/3596	54.9290	32.1903	0.741	0.1092
	40 40	0.32	2 3	30	1563 732	1.343300	52 6697	20 4490	0.7337	0.1009
	70	0.02	1	31	1624 280	3.025286	67.0560	20 7170	0.730	0.1040
	70	0.79	2	32	1684 845	2 007457	66 2741	21 2045	0.9020	0.0422
	70	0.79	2 3	33	1745 401	2.907437	70 0557	31.2040	0.9130	0.0361
	70	0.73	1	34	1745.401	2 529007	79.9557	32.3109	0.8809	0.0527
	70	0.00	2	35	1841 085	2.526907	65 4042	32.1301	0.8599	0.059
	70	0.03	2	30	1800 276	2.00010	60.7547	31.425	0.8523	0.0628
	70	0.03	1	30	1030.270	2.032071	71 9664	30.0403	0.8806	0.0507
	70	0.47	1	20	1920.304	2.212071	71.0004	32.8475	0.8668	0.0585
	70	0.47	2	30	1902.331	2.115/21	50.0450	31.7302	0.8301	0.0809
	70	0.47	3	39	1990.330	2.142029	62.2604	32.1192	0.8487	0.0663
	70	0.31	1	40	2022.12	1.754457	50.5175	31.5392	0.7311	0.1123
	70	0.31	2	41	2045.663	1.091/04	60.5259	33.6843	0.7869	0.0893
	70	0.31	3	42	2009.040	1.701007	57.801	34.1796	0.7924	0.083
	70	0.15	1	43	2001.144	1.372330	45.7276	31.9532	0.6251	0.1445
	70	0.15	2	44	2092.042	1.300/21	47.9529	32.5211	0.6658	0.1317
1	70 70	0.15	3	45	2104.14	1.3/2/	39.705	29.694	0.5985	0.1459
1	00	0.4	1	40	2134.801	3.364136	50.3808	31.2987	0.8062	0.0806
1	20	0.4	2	47	2165.463	3.642829	59.9986	31.8627	0.8117	0.0779
1	00	0.4	3	48	2196.124	3.486771	57.308	31.9603	0.8542	0.0648
10	00	0.315	1	49	2220.27	3.088614	63.5282	33.3704	0.8213	0.077
10	00	0.315	2	50	2244.416	3.073864	56.2492	31.0567	0.8118	0.0764
10	00	0.315	3	51	2268.562	2.944579	59.8996	33.8895	0.8104	0.0853
10	50	0.23	1	52	2286.192	2.46305	52.3167	30.5387	0.783	0.0926
1(10	0.23	2	53	2303.822	2.66165	59.384	31.3286	0.7951	0.086
10	00	0.23	3	54	2321.453	2.466729	53.065	33.5954	0.7645	0.0954
1(0	0.145	1	55	2332.567	1.982157	44.0428	32.8061	0.6381	0.141
1(00	0.145	2	56	2343.682	2.014993	53.622	34.9182	0.7178	0.1083
1(10	0.145	3	57	2354.797	1.903579	37.0593	26.1343	0.6766	0.1272
1(00	0.06	1	58	2359.396	1.350243	38.4301	31.0432	0.5496	0.1516
1(00	0.06	2	59	2363.995	1.360879	41.3349	32.6684	0.5525	0.1582
1()0	0.06	3	60	2368.594	1.350971	43.8024	32.0532	0.5309	0.1724

Mouse 2a Tissue

Mouse3a

Gain	Exposure 1	Relative Irr Curr	nulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
70	0.15	1	1	11.85236	2.185829	47.9307	28.7675	0.8441	0.0675
70	0.15	2	2	23.70472	2.203107	50.3199	29.1613	0.8485	0.0655
70	0.15	3	3	35.55709	2.183993	51.9934	29.5881	0.8393	0.0679
70	0.31	1	4	60.05197	3.522743	51.2359	23.7558	0.9156	0.0361
70	0.31	2	5	84.54685	3.504614	54.5836	27.2998	0.9149	0.0355
70	0.31	3	6	109.0417	3.442257	55.2661	28.412	0.9112	0.0388
70	0.47	1	7	146.1791	4.821871	55.5287	25.3589	0.9424	0.025
70	0.47	2	8	183.3165	4.770214	55.8252	25.549	0.937	0.028
70	0.47	3	9	220.4539	4.634579	54.9351	25.2639	0.9387	0.0272
70	0.63	1	10	270.2339	5.851957	52.6345	22.5959	0.951	0.0211
70	0.63	2	11	320.0138	5.812757	58.4187	24,7065	0.9509	0.0222
70	0.63	3	12	369.7937	5.872314	54.5329	23.8966	0.9528	0.0207
70	0.79	1	13	432.2161	6.919107	54.0441	20.5884	0.9616	0.0163
70	0.79	2	14	494.6386	6.919114	55.192	22.6778	0.9623	0.0166
70	0.79	3	15	557.061	6.717521	58,7159	22.7817	0.9606	0.0172
10	0.4	1	16	588.6673	1.706557	51.3835	27 1548	0.8885	0.0478
10	0.4	2	17	620.2736	1.680679	57.3794	30,7194	0.889	0.0459
10	0.4	3	18	651.8799	1.664493	53,279	29 6827	0.8823	0.0409
10	0.55	1	19	695.3386	1.92815	56 0958	28 1527	0.9089	0.0003
10	0.55	2	20	738.7972	1.899471	57,1476	28 0226	0.9081	0.0400
10	0.55	3	21	782.2559	1.873829	56,9709	27 4311	0.0001	0.0004
10	0.7	1	22	837,5669	2.088164	59 828	28 8603	0 9246	0.0407
10	0.7	2	23	892.878	2 122993	56 3792	25 677	0.0240	0.0318
10	0.7	3	24	948 189	2 067364	56 3792	26,0962	0.0207	0.0375
10	0.85	1	25	1015 352	2 277836	60 9353	26 1129	0.0204	0.0323
10	0.85	2	26	1082 516	2 234364	57 9947	25.8706	0.3333	0.0279
10	0.85	3	27	1149 679	2 245657	59 9621	28 20/1	0.3355	0.0270
10	1	1	28	1228 695	2 467307	59 5544	20.2541	0.9355	0.0202
10	1	2	29	1307 711	2 499221	62 7205	27 5507	0.0435	0.0242
10	1	3	30	1386 726	2.452820	61 9379	28 1470	0.9435	0.0251
100	0.06	1	31	1391 467	1 819057	43 8867	20.1479	0.9442	0.0249
100	0.06	2	32	1396 208	1 795079	43.0007	21.9793	0.0734	0.1241
100	0.06	3	33	1400 949	1 743571	41 0367	31 4077	0.0004	0.1176
100	0 145	1	34	1412 406	3 050003	55 7372	31.4977	0.0021	0.1249
100	0 145	2	35	1473 864	3 024303	52 0992	21 7941	0.0224	0.0743
100	0 145	2	36	1425.004	2 084270	55 0265	22 2057	0.0101	0.0765
100	0.23	1	37	1453 405	2.304279	50 1271	32.2037	0.0100	0.0796
100	0.20	2	38	1455.495	4.210400	59.1371	30.0576	0.0732	0.0526
100	0.23	2	30	1/80 8/2	4.210004	59.000	20.0007	0.0093	0.0568
100	0.20	1	40	1521 448	4.143093 6.467607	60 2610	29.7009	0.0000	0.0595
100	0.4	2	40	1553 055	6.645642	50 9121	20.0224	0.9195	0.0339
100	0.4	2	41	1584 661	6 409	59.0131	29.0900	0.9224	0.0315
40	0.7	1	42	1600 046	1 910226	50 0429	20.4100	0.9192	0.0343
40	0.32	2	40	1635 221	1.010230	59.0430	30.0342	0.0095	0.0546
40	0.32	2	44	1660 516	1.779379	55.001	30.8622	0.8646	0.0564
40	0.32	1	40	1600.010	1.005307	50.2978	29.7072	0.8596	0.0584
40	0.49	ו ר	40	1099.234	2.19/093	59.7527	29.3753	0.8972	0.0443
40	0.49	2	47	1737.951	2.191404	58.2904	30.1162	0.8955	0.0455
40	0.49	3	40	1776.669	2.348507	52.6866	27.7137	0.8911	0.047
40	0.00	ו ר	49	1020.019	2.13005/	58.9415	25.6/24	0.9429	0.0245
40	0.00	2	00 E4	1000.97	2.030343	63.2393	29.452	0.9229	0.0335
40	0.00	J 1	51	1933.12	2.5045/9	63.169	29.4751	0.9198	0.0347
40 40	0.00 0.00	ו ס	52	1990.703	2.904393	01.4156	27.2456	0.9353	0.0281
40	0.00	2	03 E 4	2004.200	2.990530	60.5353	26.5314	0.9323	0.0299
40	0.03	3	54 55	2129.869	2.9/4129	57.8912	26.9543	0.9355	0.0283
40	1		55	2208.885	3.3346/9	59.3173	26.1898	0.9434	0.0243
40	ا م	2	20	2207.901	3.3/9264	66.2/86	27.7106	0.9447	0.0247
40	I	3	57	2300.91/	3.382593	60.0479	26.8645	0.9429	0.0254

Mouse3a

Gain	Exposure	Relative Irr Cu	mulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
70	0.15	1	1	11.85236	1.603657	53.1055	31.2113	0.7796	0.0958
70	0.15	2	2	23.70472	1.595314	50.7682	31.4954	0.7855	0.0855
70	0.15	3	3	35.55709	1.596586	51.7846	31.5816	0.7755	0.0926
70	0.31	1	4	60.05197	2.254757	58.2223	30.8665	0.8733	0.0533
70	0.31	2	5	84.54685	2.304921	56.7583	31.9849	0.8764	0.0506
70	0.31	3	6	109.0417	2.263214	60.7205	32.3248	0.8716	0.0539
70	0.47	1	7	146.1791	2.948257	62.5186	28.8582	0.9135	0.0357
70	0.47	2	8	183.3165	2.997514	63.8171	28.6885	0.9109	0.0378
70	0.47	3	9	220.4539	2.959307	58.8974	27.8418	0.9704	0.0394
70	0.63	1	10	270.2339	3.504579	65.4751	27.5211	0.9207	0.0336
70	0.63	2	11	320.0138	3.58575	64.0734	29.6804	0.9274	0.031
70	0.63	3	12	369.7937	3.476564	64.9139	28.3856	0.9236	0.035
70	0.79	1	13	432.2161	4.185393	65.2427	26.7321	0.9431	0.0242
70	0.79	2	14	494.6386	4.155964	71.8692	29.7798	0.9411	0.0255
70	0.79	3	15	557.061	4.1066	68.9786	28,9941	0.9386	0.0264
10	0.4	1	16	588.6673	1.405007	56.9862	30.383	0.8439	0.0667
10	0.4	2	17	620.2736	1.404493	63.1363	33,5966	0.8376	0.0703
10	0.4	3	18	651.8799	1.384143	58.1358	32,4402	0.8272	0.0752
10	0.55	1	19	695.3386	1.550057	56.6854	28.6073	0.8759	0.0512
10	0.55	2	20	738.7972	1.531629	60.6583	30,9949	0.8671	0.0597
10	0.55	3	21	782.2559	1.538971	59.6844	30,2792	0.8735	0.0544
10	0.7	1	22	837.5669	1.643686	59.6811	29.8847	0.89	0.0483
10	0.7	2	23	892.878	1.665157	65.9298	30.6777	0 8948	0.0455
10	0.7	3	24	948.189	1.662371	61.7208	28.3624	0.8953	0.0462
10	0.85	1	25	1015.352	1.848643	68.5813	31 0531	0.9189	0.0346
10	0.85	2	26	1082.516	1.782129	62,3568	28 7479	0.9066	0.0040
10	0.85	3	27	1149.679	1.729321	64 6265	30 2779	0.0000	0.0421
10	1	1	28	1228.695	1.859807	67,7337	30 3843	0.9136	0.0440
10	1	2	29	1307.711	1.92155	65 8236	29 9062	0.9166	0.0363
10	1	3	30	1386.726	1.9013	69 2661	30 9281	0.0100	0.0364
100	0.06	1	31	1391.467	1.5174	43 5161	33 4359	0.6218	0.0004
100	0.06	2	32	1396,208	1 462521	42 4348	32 1801	0.0210	0.142
100	0.06	3	33	1400.949	1 516171	46 245	30 5128	0.0000	0.132
100	0.145	1	34	1412 406	2 273757	54 7378	32 7368	0.0237	0.14007
100	0.145	2	35	1423 864	2 257286	50 1788	30 7761	0.7002	0.1007
100	0.145	3	36	1435.321	2 236279	53 8048	33 1385	0.702	0.0972
100	0.23	1	37	1453 495	3 01475	55 2714	31 0975	0.7400	0.1092
100	0.23	2	38	1471 668	2 9164	57 8654	32 2111	0.0242	0.0734
100	0.23	3	39	1489 842	3 1197	60 2691	33 0445	0.0114	0.0000
100	0.4	1	40	1521 448	4 712071	61 2496	29 8165	0.0000	0.0721
100	0.4	2	41	1553 055	4 688257	61 2809	28.0103	0.0912	0.0443
100	0.4	3	42	1584 661	4 473707	63 6176	31 8001	0.0901	0.0454
40	0.32	1	43	1609 946	1 5368	55 4042	20 0272	0.0002	0.0407
40	0.32	2	44	1635 231	1 517071	53 8511	29.0272	0.0240	0.0734
40	0.32	- 3	45	1660 516	1 516057	54 6024	32 7808	0.0132	0.0765
40	0.49	1	46	1699 234	1.8/2070	50 6324	32.7090	0.0000	0.0804
40	0.49	2	40	1737 951	1.042079	56 700	31.9330	0.0/3/	0.0535
40	0.40	2	18	1776 660	1.0197.57	50.709	30.7449	0.8594	0.0594
40	0.66	1	40	1828 810	2 104042	64 0422	30.4113	0.0020	0.0635
40	0.66	2	50	1880.07	2.104943	64.9133	30.0057	0.9138	0.037
40	0.00	2	51	1032 12	1 086470	04.10	31.3324	0.0041	0.0487
40 40	0.00 N 83	1	50	1008 702	1.3004/9	03.0933 64 0444	29.7067	0.8922	0.046
40 40	0.03 N 83	י ס	52	2064 206	2.212901	04.0441 60.4740	31.9518	0.9041	0.0425
-0 40	0.03	2	55	2004.200	2.2/0/14	02.4/49	29.1944	0.9025	0.0439
40 40	0.03	3	54 55	2129.009	2.2/59	02.9329	29.8147	0.9051	0.0418
40	1	ו ר	55	2200.000	2.541343	05.0281	30.1749	0.9158	0.0359
40	1	2	50	2207.901	2.591857	67.9619	30.1246	0.9169	0.0369
40	1	3	57	2300.91/	2.536957	61.9198	29.6126	0.9075	0.0394

.

Mouse3a

Gain	Exposure	Relative Im	Cumulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
7	0 0.15	i 1	1	11.85236	1.310557	52.903	32.7733	0.7325	0.1041
7	0 0.15	2	2	23.70472	1.324557	55.8798	33.4164	0.7383	0.1113
7	0 0.15	3	3	35.55709	1.320429	60.6626	35,1454	0.7451	0.1041
7	0 0.31	1	4	60.05197	1.643371	64.7687	31.651	0.8305	0 0709
7	0 0.31	2	5	84.54685	1.698507	63.0644	32.4378	0.8325	0.0693
7	0 0.31	3	6	109.0417	1.743021	66.3737	32,445	0.8339	0.0721
7	0 0.47	1	7	146.1791	2.102364	68.5863	31,1614	0.8761	0.0053
7	0 0.47	2	8	183.3165	2.100821	72.3793	33.37	0.8765	0.053
7	0 0.47	3	9	220.4539	2.101557	68.7853	32.0801	0.8714	0.0561
7	0 0.63	1	10	270.2339	2.458307	74.2449	33,1039	0.8971	0.0459
7	0 0.63	2	11	320.0138	2.445171	73.4923	31,9805	0.926	0.0455
7	0 0.63	3	12	369.7937	2.480829	71.4642	31.3944	0.8985	0.0429
7	0 0.79	1	13	432.2161	2.866643	74.2537	30.2499	0.9163	0.0358
7	0 0.79	2	14	494.6386	2.979636	73.9385	30.8788	0.9173	0.0347
7	0 0.79	3	15	557.061	2.962064	72.0386	31.386	0.9186	0.0364
1	0 0.4	1	16	588.6673	1.2354	54.6041	33,4098	0 761	0.0004
1	0 0.4	2	17	620.2736	1.255164	57.0198	32,832	0 7526	0 101
1	0 0.4	3	18	651.8799	1.253093	55.4233	31,7813	0 7566	0 1024
1	0 0.55	1	19	695.3386	1.325571	59.1534	31 5551	0.8139	0.0768
1	0 0.55	2	20	738.7972	1.351636	60.8962	31,6401	0.8194	0.0778
1	0 0.55	3	21	782.2559	1.341893	58.8365	31 8688	0.8158	0.0784
10	0 0.7	1	22	837.5669	1.407286	64 6885	32 5044	0.8465	0.0683
1(0.7	2	23	892.878	1.425021	63.0371	31 3605	0.8538	0.0644
1(0.7	3	24	948.189	1.43875	65.7123	32 9903	0.8542	0.0602
1(0.85	1	25	1015.352	1.562129	67.5597	31 6752	0.8808	0.0505
1(0.85	2	26	1082.516	1.560307	66.0256	32 2798	0.8818	0.0505
1(0.85	3	27	1149.679	1.526779	64,5031	32 0364	0.8777	0.0518
1(D 1	1	28	1228.695	1.638779	69,8933	31 6102	0.8929	0.0466
1() 1	2	29	1307.711	1.620521	68.056	32 4237	0.8904	0.0460
1() 1	3	30	1386.726	1.658779	70 8272	31 4441	0.8964	0.0466
100	0.06	1	31	1391.467	1.365521	42 9322	32 6854	0.5683	0.0400
100	0.06	2	32	1396.208	1.370479	46.0459	33 9414	0.5821	0.130
100	0.06	3	33	1400.949	1.362493	43 235	31 5879	0.58021	0.1400
100	0.145	1	34	1412.406	1.947371	49.2172	31 9046	0.7268	0.1314
100	0.145	2	35	1423.864	1.9242	51.8969	32 2806	0 7089	0.1141
100	0.145	3	36	1435.321	1.915043	52.0852	35 4292	0 707	0.1102
100	0.23	1	37	1453.495	2.527536	60.3997	34 5744	0 7999	0.0849
100	0.23	2	38	1471.668	2.501343	59.5653	32,4009	0 7986	0.0858
100	0.23	3	39	1489.842	2.583586	55.7673	31.8721	0 7961	0.0854
100) 0.4	1	40	1521.448	3.634471	66.2506	33.1174	0.8635	0.0569
100) 0.4	2	41	1553.055	3.749493	65.1519	32,4157	0.8652	0.0586
100	0.4	3	42	1584.661	3.613557	68.0268	32,1029	0.8637	0.0585
40	0.32	1	43	1609.946	1.011307	58.0296	32.3314	0 7945	0.0873
40	0.32	2	44	1635.231	1.441707	57.2084	31,2016	0.8001	0.0813
40	0.32	3	45	1660.516	1.3989	60.5947	34,1484	0 7843	0.0896
40	0.49	1	46	1699.234	1.5879	60.3772	30 8028	0.8415	0.0000
40	0.49	2	47	1737.951	1.6362	62.6073	32 5153	0.8356	0.000
40	0.49	3	48	1776.669	1.605014	56.3085	32 3405	0.8229	0.0701
40	0.66	1	49	1828.819	1.829336	67.8949	31 4686	0.8824	0.0516
40	0.66	2	50	1880.97	1.801843	63.456	33,6456	0.8671	0.0551
40	0.66	3	51	1933.12	1.762843	64.4078	31,5356	0.8596	0.0608
40	0.83	1	52	1998.703	1.753671	65.5881	30,644	0.8888	0.0471
40	0.83	2	53	2064.286	1.9844	64.5773	30.0431	0.8877	0.0484
40	0.83	3	54	2129.869	1.97485	63.604	30,9199	0.8802	0.0508
40	1	1	55	2208.885	2.114571	64.4976	30.0008	0.8899	0.0459
40	1	2	56	2287.901	2.177929	68.3007	32,2907	0.8966	0.0443
40	1	3	57	2366.917	2.23995	64.4078	30,7988	0.8945	0.0461

Mouse 3a Tissue

Mouse4a

Gain	Exposure	Relative Irr Cun	nulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
1	0 0.4	1	1	29.83465	1.248415	54.2929	31.954	0.7545	0.1028
1	0 0.4	2	2	59.66929	1.258496	59.3012	32.9182	0.755	0.1012
1	0 0.4	3	3	89.50394	1.266393	61.4194	33.1379	0.768	0.0946
1	0 0.55	i 1	4	130.5266	1.349896	64.5087	32.7688	0.8357	0.0656
1	0 0.55	2	5	171.5492	1.338126	61.4447	31.6342	0.8213	0.0756
1	0 0.55	3	6	212.5719	1.353993	65.0657	31.7011	0.8316	0.0697
1	0 0.7	' 1	7	264.7825	1.428726	67.2662	33.2668	0.8621	0.059
1	0 0.7	2	8	316.9931	1.4462	67.5801	27.97	0.8697	0.058
1	0 0.7	3	9	369.2037	1.446259	70.3787	32,3974	0.8699	0 0542
1	0 0.85	1	10	432.6024	1.531704	70.1708	33,1687	0.8846	0.0498
1	0 0.85	2	11	496.001	1.522459	71.0868	32,7576	0.8849	0.0503
1	0 0.85	3	12	559.3996	1.550452	73.073	31,784	0.8865	0.051
1	0 1	1	13	633.9862	1.645319	76.4273	31,1483	0 9068	0 0409
1	0 1	2	14	708.5728	1.664059	78.4581	31.0013	0.9106	0.038
1	0 1	3	15	783.1594	1.674585	74,9484	31 3675	0.9122	0.000
4	0 0.32	1	16	807.0272	1,422963	65.6925	32 1986	0.8232	0.0000
4	0 0.32	2	17	830.8949	1.416637	62,6822	32 652	0.8156	0.0768
4	0 0.32	3	18	854,7626	1,439726	67 3019	34 8399	0.0100	0.0700
4	0 0.49	1	19	891.31	1,639674	72 368	32 241	0.0270	0.0720
4	0 0.49	2	20	927.8575	1 626193	69 3753	31 945	0.0703	0.0510
4	0 0.49	3	21	964 4049	1 653133	75 0447	32 765	0.0730	0.0331
4	0 0.66	1	22	1013 632	1 837407	75 0644	30 7912	0.0021	0.0497
4	0 0.66	2	23	1062 859	1 833711	72 127	31 1546	0.0997	0.044
4	0 0.66	- 3	24	1112 086	1.831637	73 1233	31 4555	0.0905	0.0430
4	0 0.83	1	25	1173 993	2 069674	76 7000	30 8673	0.0977	0.0437
4(0 0.83	2	26	1235.9	2 056133	76 2051	31 5576	0.9100	0.0356
4(0.83	- 3	27	1297 807	2.000100	80 3201	30.7694	0.9107	0.0363
4(0 1	1	28	1372 394	2 259015	81 4034	30.7004	0.9197	0.0358
4(- 	2	29	1446 98	2.203013	85 0680	20,4003	0.9327	0.0299
4() 1	3	30	1521 567	2.207140	82 2224	29.002	0.9303	0.0309
70	0 15	1	31	1532 755	1 406711	50 2024	31.2930	0.9283	0.0314
70	0.10	2	32	15/3 0/3	1.400711	50 2954	34.14/0	0.7505	0.1029
70	0.10	2	32	1555 131	1.409401	59.3034	33.4700	0.7580	0.0997
70	0.10	1	34	1578 252	1.399304	54.0251	33.0757	0.7461	0.1022
70	0.01	2	35	1601 375	1.770439	66 494	31.9246	0.842	0.0668
70	0.01	2	36	1624 406	1.010010	66 2077	33.2796	0.8452	0.0651
70	0.01	1	37	1650 552	1.774333	74 4922	33.0188	0.8412	0.0665
70	0.47	2	20	1604 609	2.200207	74.4033	32.3745	0.8887	0.0473
70	0.47	2	30	1720 664	2.193904	70.0903	31.0294	0.8874	0.0499
70	0.47	1	40	1729.004	2.231920	73.1101	31.1217	0.889	0.0493
70	0.03	2	40	1922 642	2.571069	78.9465	31.3773	0.9108	0.0402
70	0.03	2	41	1023.043	2.560965	77.8667	31.2049	0.9085	0.0406
70	0.03	3	42	1070.032	2.349941	75.5965	32.2913	0.9104	0.0403
70	0.79	2	43	1929.000	2.973481	80.4637	29.3631	0.9284	0.0316
70	0.79	2	44	1966.479	2.963556	80.6906	31.025	0.9243	0.033
100	0.79	3	40	2047.403	3.025459	11.736	31.1334	0.9247	0.0325
100	0.06		40	2051.878	1.408807	46.6626	34.0599	0.6187	0.1413
100		2	47	2056.353	1.390311	41.8608	32.3684	0.6085	0.1512
100	0.06	3	48	2060.828	1.379985	41.6882	30.5675	0.61	0.1423
100	0.145		49	2071.643	1.964/56	53.7948	32.2564	0.7638	0.0919
100	0.145	2	50	2082.458	1.967252	53.1316	33.4414	0.7543	0.107
100	0.145	3	51	2093.273	1.948896	54.8458	32.6001	0.7522	0.1026
100	0.23	1	52	2110.428	2.58243	65.9946	32.8156	0.8348	0.0714
100	0.23	2	53	2127.583	2.557644	64.0963	31.8675	0.8242	0.0717
100	0.23	3	54	2144.738	2.52437	67.9531	34.086	0.8266	0.0746
100	0.315	1	55	2168.233	3.149911	69.8047	32.5501	0.8642	0.0576
100	0.315	2	56	2191.728	3.119511	68.7328	32.0417	0.8667	0.0579
100	0.315	3	57	2215.222	3.152356	67.4219	31.3275	0.861	0.0624
100	0.4	1	58	2245.057	3.712978	74.0834	32.5521	0.8822	0.0505
100	0.4	2	59	2274.892	3.815556	75.3829	30.4895	0.8957	0.0465
100	0.4	3	60	2304.726	3.716726	72.5043	31.6959	0.8879	0.0492

Mouse 4a Vein

Mouse4a

						-				
Gain	E	xposure 1	Relative Irr C	Cumulative	Accumulat	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
	10	0.4	1	1	29.83465	1.251659	68.3765	34.4412	0.7832	0.0918
	10	0.4	2	2	59.66929	1.248578	60.3828	32.6263	0.7729	0.0938
	10	0.4	3	3	89.50394	1.246104	61.2621	33.7001	0.7728	0.0947
	10	0.55	1	4	130.5266	1.331163	72.8594	34.2186	0.8349	0.0681
	10	0.55	2	5	171.5492	1.328911	68.5709	32.8407	0.8408	0.0673
	10	0.55	3	6	212.5719	1.346163	72.869	32.4855	0.8396	0.0687
	10	0.7	1	7	264.7825	1.412007	75.8372	32.2745	0.8683	0.0554
	10	0.7	2	8	316.9931	1.433696	78.1534	33.3046	0.8785	0.0523
	10	0.7	3	9	369.2037	1.416948	70.0845	33.5629	0.8751	0.0534
	10	0.05	2	10	432.0024	1.523022	80.3243	34.2184	0.9	0.0458
	10	0.85	23	12	550 3006	1.517052	91 6202	32.1845	0.8952	0.0449
	10	0.00	1	12	633 0862	1.000700	70 0042	33.830	0.9016	0.0448
	10	1	2	13	708 5728	1.029044	82 009	31.00/4	0.9141	0.0366
	10	1	3	15	783 1594	1.623126	80 5158	22 7049	0.9141	0.0373
	40	0.32	1	16	807 0272	1 405096	69 4751	31 8162	0.9102	0.0371
	40	0.32	2	17	830,8949	1 414037	66 4904	35 4277	0.0230	0.0694
	40	0.32	3	18	854.7626	1.417296	66 39	34 6509	0.0330	0.0098
	40	0.49	1	19	891.31	1.637533	82.8177	30.4323	0.8915	0.0000
	40	0.49	2	20	927.8575	1.614259	74.7071	32.9349	0.8881	0.0488
	40	0.49	3	21	964.4049	1.6254	78.5523	32.4108	0.884	0.0521
	40	0.66	1	22	1013.632	1.797348	82.2476	30.7741	0.9064	0.0405
	40	0.66	2	23	1062.859	1.804652	82.0325	31.7717	0.905	0.0411
	40	0.66	3	24	1112.086	1.798496	79.8511	31.6799	0.9042	0.0422
	40	0.83	1	25	1173.993	1.992704	85.6966	28.6201	0.9214	0.0372
	40	0.83	2	26	1235.9	2.029622	84.1408	33.4947	0.9255	0.0335
	40	0.83	3	27	1297.807	2.012222	84.2075	31.5339	0.9276	0.0324
	40	1	1	28	1372.394	2.197237	88.688	29.8057	0.9365	0.026
	40	1	2	29	1440.98	2.212548	90.8213	30.4399	0.9367	0.034
	70	0 15	1	30	1521.007	2.22037	91.3035	31.5302	0.934	0.0298
	70	0.10	2	32	1543 943	1.370007	02.2000 57 9711	33.0107	0.7621	0.0944
	70	0.15	3	33	1555 131	1 395667	61 6860	32.4099	0.7715	0.0967
	70	0.31	1	34	1578 253	1 760333	73 2865	31 2572	0.7000	0.0940
	70	0.31	2	35	1601.375	1.792837	75.73	32 8233	0.8635	0.0021
	70	0.31	3	36	1624.496	1.758459	71.6082	31 7988	0.8596	0.0077
	70	0.47	1	37	1659.552	2.202963	83.6044	32.2228	0.8987	0.0445
	70	0.47	2	38	1694.608	2.200126	75.4555	31.5909	0.8997	0.045
	70	0.47	3	39	1729.664	2.171941	80.185	31.2833	0.9002	0.0445
	70	0.63	1	40	1776.653	2.530963	85.9763	32.0092	0.9206	0.0337
	70	0.63	2	41	1823.643	2.57697	87.1368	29.5879	0.9173	0.0362
	70 70	0.63	3	42	1870.632	2.531178	77.7445	30.5814	0.9192	0.0358
	70 70	0.79	1	43	1929.556	2.926904	91.541	29.4474	0.935	0.0271
	70	0.79	2	44	1988.479	2.946548	86.1446	30.7619	0.9314	0.0294
1(/U 00	0.79	3	45	2047.403	2.98623	85.0351	30.2432	0.9345	0.0301
1(00	0.00	1	40	2051.878	1.402022	49.8785	34.4963	0.6461	0.1402
1(00	0.00	2	47	2000.000	1.39003	49.51	31.9089	0.6124	0.1358
1(00	0.00	1	40	2000.020	1.402022	51.9903	32.1192	0.6332	0.1354
1(00	0.145	2	-+9 50	2071.043	1.949009	00.0072 60.5226	33.4627	0.7852	0.0927
1(00	0.145	3	51	2002.400	1.932696	61 0/07	36 0069	0.7826	0.0902
10	00	0.23	1	52	2110.428	2,4996	69.8069	32 4041	0.7751	0.0300
10	00	0.23	2	53	2127.583	2.499607	68.9733	33,1368	0.0304	0.0723
10	00	0.23	3	54	2144.738	2.508378	67.2756	31,9931	0.845	0.0692
10	00	0.315	1	55	2168.233	3.075081	75.7456	33.4292	0.8688	0.0553
10	00	0.315	2	56	2191.728	3.071356	73.8262	33.4248	0.8722	0.0557
10	00	0.315	3	57	2215.222	3.123289	79.8329	34.1004	0.875	0.0545
10	00	0.4	1	58	2245.057	3.610207	73.1357	30.0954	0.8916	0.0478
10	00	0.4	2	59	2274.892	3.636733	77.8711	32.1963	0.898	0.0446
10	JU	0.4	3	60	2304.726	3.688763	78.6768	31.9384	0.8994	0.043

Mouse 4a Artery

•

Mouse4a

Gain		Exposure 7	Relative Irr Cum	ulativ	e Accumula	t SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
	10	0.4	1	1	29.83465	1.232741	64.9766	32.5012	0.7795	0.0953
	10	0.4	2	2	59.66929	1.233511	60.8096	33,4929	0 7645	0.095
	10	0.4	3	3	89.50394	1.232089	57.3027	32 8772	0 7655	0.000
	10	0.55	1	4	130.5266	1.303856	72 8217	33 3182	0.7000	0.102
	10	0.55	2	5	171.5492	1.306815	69 7979	34 3218	0.007	0.0074
	10	0.55	3	6	212 5719	1 319326	77 0928	33 / 150	0.0000	0.0703
	10	0.7	1	7	264 7825	1 394281	77 3774	32 1360	0.041	0.0674
	10	0.7	2	. 8	316 9931	1 403778	77 0324	32.1509	0.0741	0.0522
	10	0.7	3	g	369 2037	1 3080/8	76 1224	33.0376	0.0709	0.0524
	10	0.85	1	10	432 6024	1.030340	82 0070	32.0144	0.0707	0.0513
	10	0.85	2	11	406 001	1.404207	02.0979	31.2087	0.9014	0.043
	10	0.85	2	12	550 2006	1.49023	01.0370	32.0000	0.898	0.0455
	10	0.00	1	12	539.3990	1.493103	02.1098	32.9046	0.9403	0.0422
	10	1	2	14	709 5709	1.505007	00.0422	30.0346	0.9169	0.036
	10	1	2	14	700.5728	1.585652	90.0391	30.5681	0.9202	0.0345
	10	0 22	3	10	/83.1594	1.580681	85.4821	31.6587	0.9173	0.0351
	40	0.32	1	10	807.0272	1.3/1222	70.9834	30.8444	0.8332	0.0739
	40	0.32	2	1/	830.8949	1.390733	73.388	33.1665	0.8395	0.0693
	40	0.32	3	18	854.7626	1.3834	69.123	31.7289	0.84	0.0674
	40	0.49	1	19	891.31	1.572852	84.8061	34.425	0.8929	0.0472
	40	0.49	2	20	927.8575	1.5584	75.3968	31.6618	0.8873	0.0505
	40	0.49	3	21	964.4049	1.567067	78.9192	30.2684	0.886	0.0477
	40	0.66	1	22	1013.632	1.745378	87.4987	32.4787	0.9131	0.037
	40	0.66	2	23	1062.859	1.748489	85.2175	31.2961	0.911	0.0397
	40	0.66	3	24	1112.086	1.767378	84.6003	31.7427	0.9116	0.0372
	40	0.83	1	25	1173.993	1.945311	88.0657	28.8299	0.9286	0.0355
	40	0.83	2	26	1235.9	1.949741	95.1213	30.8064	0.92831	0.032
	40	0.83	3	27	1297.807	1.933481	85.696	31.6265	0.9256	0.0328
	40	1	1	28	1372.394	2.125163	93.9374	29.5682	0.942	0.0261
	40	1	2	29	1446.98	2.151667	96.8605	29,6409	0 9398	0.0274
4	40	1	3	30	1521.567	2.144533	95 49	30 6758	0.9394	0.0274
-	70	0.15	1	31	1532,755	1.355563	63 3009	34 7719	0 7575	0.0274
-	70	0.15	2	32	1543,943	1 347422	63 4385	33 5787	0.768	0.1000
-	70	0.15	3	33	1555 131	1 358393	61 052	32 647	0.7653	0.0929
-	70	0.31	1	34	1578 253	1 711	75 6701	32 1813	0.7000	0.0923
-	70	0.31	2	35	1601 375	1 696948	73 1317	34 4592	0.0000	0.0571
-	70	0.31	- 3	36	1624 496	1 701533	77 3506	32 0272	0.0032	0.0593
-	70	0.47	1	37	1659 552	2 083710	94 1999	31 2015	0.0000	0.0627
-	70	0.47	2	38	1604 608	2.003713	96 7647	31.3913	0.9047	0.0405
-	70	0.47	2	30	1720 664	2.070444	00.7017	32.1311	0.904	0.0414
	70	0.63	1	40	1725.004	2.003015	04.703	30.1723	0.901	0.0454
	70	0.00	י כ	40	1922 642	2.400141	09.0202	30.974	0.9245	0.0327
	20	0.00	2	41	1023.043	2.420303	83.7486	31.6726	0.9217	0.0342
7	20	0.03	3	42	1070.032	2.407667	85.8464	30.0553	0.9208	0.0347
7	20	0.79	1	43	1929.556	2.747652	88.1612	30.9903	0.9348	0.0293
7	0 70	0.79	2	44	1988.479	2.778296	93.4185	28.9005	0.9348	0.029
10	0	0.79	3	45	2047.403	2.773304	91.5489	32.1736	0.939	0.0264
10	0	0.06	1	46	2051.878	1.373556	55.6798	35.5861	0.6254	0.146
	0	0.06	2	4/	2056.353	1.362904	55.1774	33.872	0.6471	0.1349
10	0	0.06	3	48	2060.828	1.354015	51.8807	33.1823	0.6507	0.1331
10	0	0.145	1	49	2071.643	1.850089	59.4823	30.7688	0.7867	0.092
10	0	0.145	2	50	2082.458	1.86057	63.7523	32.846	0.7874	0.0884
10	0	0.145	3	51	2093.273	1.882319	69.1437	36.7375	0.7919	0.0869
10	0	0.23	1	52	2110.428	2.39323	72.6975	34.2522	0.8486	0.0646
10	0	0.23	2	53	2127.583	2.389111	70.0519	33.1367	0.8401	0.0697
10	0	0.23	3	54	2144.738	2.371	71.6138	33.7361	0.8453	0.0669
10	0	0.315	1	55	2168.233	2.923511	80.7446	32,181	0.8864	0.0497
10	0	0.315	2	56	2191.728	2.874452	73.0974	32,1228	0.876	0.0529
10	0	0.315	3	57	2215.222	2.903193	78,1554	33,3231	0.8832	0.0529
10	0	0.4	1	58	2245.057	3.39423	81.6787	33,9078	0.8984	0.0020
10	0	0.4	2	59	2274.892	3,460215	82 1298	32 8302	0.0304	0.0401
10	0	0.4	3	60	2304 726	3 429778	82 9793	31 00/2	0.0040	0.0414
-			-				52.0100	01.0040	0.3023	0.0430

Mouse 4a Tissue

2 SNR 2.5

3.5

4

3

1.5

1

0.5

0

Mouse5a

Gain		Exposure 1	Relative In Cum	nulativ	e Accumula	t: SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
	100	0.06	1		4.44330	7 2.479533	46.2413	31.2319	0 7863	0 0904
	100	0.06	2	2	2 8.886614	1 2.529274	51.0555	29.7192	0 7922	0.0838
	100	0.06	3	3	3 13.32992	2 2.469422	49.412	30,5579	0 7936	0.0000
	100	0.145	1	2	1 24.0679 [,]	4.774859	50,2866	26 4852	0.0000	0.0001
	100	0.145	2	5	5 34.8059 [.]	4,92583	57 4998	29 7529	0.0000	0.0431
	100	0.145	3	e	45.5439	4 965407	63 9757	30 3678	0.9034	0.0410
	100	0.23	1	7	62.57657	7 118467	60.8788	28 8400	0.0097	0.0402
	100	0.23	2	ج	79 60925	5 7 277311	60 5036	20.0409	0.9333	0.0293
	100	0.23	3	ç	96 64193	7 343074	56 401	21.4923	0.9317	0.0301
	100	0.315	1	10	119 9693	0 180/15	22 7020	20.023	0.9285	0.0326
	100	0.315	2	11	143 2067	0 575074	55.7959	11.3997	0.9417	0.0258
	100	0 315	3	12	166 624	9.373074	67 9766	20.1406	0.9488	0.0227
	100	0.4	1	13	106.024	11 05566	57.0755	20.0100	0.9478	0.022
	100	0.4	2	1/	225 2621	12 22004	57,09400	24.3/8/	0.9578	0.0187
	100	0.4	2	15	225.0001	12.33004	57.0861	23.1901	0.9584	0.0179
	70	0.15	1	10	200.4902	12.30730	59.4674	22.9969	0.958	0.018
	70	0.15	י ז	10	200.0904	2.609289	54.3219	30.4287	0.8877	0.0477
	70	0.15	2	17	277.7067	2.475407	51.7616	27.7822	0.8816	0.0521
	70	0.15	3	18	288.815	2.531274	52.8028	28.5423	0.8912	0.0466
	70	0.31	1	19	311.772	4.200022	57.4241	26.6316	0.933	0.0289
	70	0.31	2	20	334.7291	4.180252	55.8462	25.6705	0.9394	0.0265
	70	0.31	3	21	357.6862	4.177326	58.301	25.6918	0.9367	0.0267
	70	0.47	1	22	392.4921	5.99023	67.2376	27.6273	0.9571	0.0195
	70	0.47	2	23	427.298	5.826548	64.8627	26.4966	0.9579	0.0187
	70	0.47	3	24	462.1039	5.829711	57.2309	22.6513	0.955	0.0199
	70	0.63	1	25	508.7587	7.567733	62.1207	22.5469	0.9686	0.0136
	70	0.63	2	26	555.4134	7.680089	61.808	23.5587	0.9666	0.0147
	70	0.63	3	27	602.0681	7.562593	61.6279	23.9916	0.9654	0.0156
	70	0.79	1	28	660.5717	9.008341	53.7316	18.512	0.9717	0.0124
	70	0.79	2	29	719.0752	9.256215	62.6192	21,4068	0 9725	0.0128
	70	0.79	3	30	777.5787	9.252622	53.8831	19.1024	0.9712	0.0128
	40	0.32	1	31	801.2764	2.624637	57.4538	27 3035	0.9219	0.0120
	40	0.32	2	32	824.974	2.656207	52 3714	25 6035	0.0210	0.0343
	40	0.32	3	33	848.6717	2.644719	51 6799	24 5364	0 9217	0.0332
	40	0.49	1	34	884,9587	3,465193	54 3578	23 7446	0.9217	0.0000
	40	0.49	2	35	921,2457	3 466926	55 6265	25 266	0.0459	0.0233
	40	0.49	3	36	957 5327	3 474719	55 2153	24 3636	0.9450	0.0234
	40	0.66	1	37	1006 409	4 402711	56 3453	24.3030	0.9405	0.023
	40	0.66	2	38	1055 285	4.354867	55 5125	22.0002	0.9565	0.0198
	40	0.66	3	30	1104 162	4.350627	53.3135	23.4137	0.9588	0.0183
	40	0.83	1	40	1165 628	4.330037	53.4004	21.4382	0.9582	0.0187
	40	0.83	2	40	1227 002	5.2354	04.270	21.1731	0.9632	0.0162
	40	0.83	2	40	1227.093	5.107556	54.5259	21.9059	0.9644	0.0162
	40	0.00	1	42	1200.009	5.162919	58.0108	23.145	0.9646	0.0154
	40 40	1	1	43	1302.014	6.130444	55.4217	19.6536	0.9712	0.0121
	40 AN	1	2	44	1430.009	5.833956	52.6632	19.5386	0.9692	0.0133
	10	0 4	3	40	1510.724	5.881252	59.3984	21.9245	0.97	0.0129
	10	0.4		40	1540.346	2.04/06/	44.9983	23.2808	0.9064	0.0398
	10	0.4	2	47	1569.969	2.051593	53.0802	26.854	0.9066	0.0398
	10	0.4	3	48	1599.591	1.9928	54.0821	28.6099	0.8991	0.0422
	10	0.55	1	49	1640.321	2.381311	49.8412	24.262	0.9292	0.0312
	10	0.55	2	50	1681.051	2.278837	52.1385	25.517	0.9276	0.0319
	10	0.55	3	51	1721.781	2.310526	53.3384	25.2274	0.9299	0.0301
	10	0.7	1	52	1773.62	2.601807	56.0286	24.3599	0.9427	0.0253
	10	0.7	2	53	1825.459	2.622178	55.3013	24.5241	0.9412	0.0252
	10	0.7	3	54	1877.297	2.569689	55.4751	26.2194	0.9425	0.0247
•	10	0.85	1	55	1940.244	2.926919	53.0072	22.1237	0.9514	0.0212
	10	0.85	2	56	2003.191	2.919859	56.872	23.3162	0.9527	0 0202
	10	0.85	3	57	2066.138	2.875778	63.6572	26 796	0.9483	0.0202
	10	1	1	58	2140.193	3.280837	52.4587	21.0436	0.9562	0.0201
1	0	1	2	59	2214.248	3.280237	55.5089	22 9946	0 9549	0.019
1	0	1	3	60	2288,303	3.256844	56 0607	22.00-0	0.0049	0.0193
				-				-2.0100	0.0044	0.0204

Vein (2)

Mouse5a

Gain		Exposure 1	Relative Irr Cum	ulativ	e Accumulat	SNR	PO2 Mean	PO2 St Dr	R2 Mean	R2 St Dev
	100	0.06	1	1	4.443307	1.878733	47.7652	34.0497	0.7541	0 1085
	100	0.06	2	2	8.886614	1.848711	53.1851	32.2245	0.7416	0.107
	100	0.06	3	3	13.32992	1.878156	55.1511	32.3214	0.762	0.0989
	100	0.145	1	4	24.06791	3.212674	60.9515	31.4961	0.8634	0.0593
	100	0.145	2	5	34.80591	3.104563	63.6236	31.56	0.8669	0.0575
	100	0.145	3	6	45.5439	3.254993	62.8875	31.0666	0.866	0.0606
	100	0.23	1	7	62.57657	4.701	71.1771	32,7502	0.9113	0.037
	100	0.23	2	8	79.60925	4.648919	69.3285	29 9091	0.9121	0.0366
	100	0.23	3	9	96.64193	4.674126	69.0837	32 0626	0.9074	0.0000
	100	0.315	1	10	119.9693	6.076074	63.9224	27.2446	0.9317	0 0271
	100	0.315	2	11	143.2967	5.858985	71,7915	29 1064	0.9334	0.0271
	100	0.315	3	12	166.624	5.801637	72.796	31.3634	0.9334	0.0283
	100	0.4	1	13	196.2461	7.050156	73,4951	29.44	0.9442	0.0200
	100	0.4	2	14	225.8681	7.421222	77.5166	30 6204	0.0442	0.0243
	100	0.4	3	15	255,4902	7.648237	79 055	29 7445	0.0400	0.0244
	70	0.15	1	16	266.5984	1.891281	57,8994	30 4998	0.853	0.0220
	70	0.15	2	17	277.7067	1.897696	63 3721	32 2227	0.000	0.0651
	70	0.15	3	18	288.815	1.894978	65 7333	33 7442	0.8609	0.0608
	70	0.31	1	19	311.772	2 801504	69 8133	30 1597	0.0003	0.0008
	70	0.31	2	20	334,7291	2 790333	70 0534	31 105	0.0141	0.0379
	70	0.31	3	21	357 6862	2 814096	72 5058	30 5953	0.914	0.0309
	70	0.47	1	22	392 4921	3 823978	80 7039	31 1622	0.9107	0.0374
	70	0.47	2	23	427 298	3 826896	80 7321	28 0344	0.9430	0.0245
	70	0.47	- 3	24	462 1039	3 82303	77 5781	20.9344	0.9441	0.0251
	70	0.63	1	25	508 7587	4 750311	80 2046	20.0279	0.9452	0.0253
	70	0.63	2	26	555 4134	4 784341	78 1404	29.0001	0.9002	0.0194
	70	0.63	3	27	602 0681	A 7232	80.0024	20.1099	0.9031	0.0206
	70	0.79	1	28	660 5717	5 760503	80.6246	20.942	0.9516	0.0212
	70	0.79	2	20	710 0752	5,700393	00.0240	20.2049	0.9638	0.0167
	70	0.79	2	30	777 5787	5 702549	03.0004	20.4420	0.9624	0.0175
	40	0.70	1	31	801 2764	1 091201	79.2240	27.7121	0.9625	0.0164
	40	0.32	2	32	824 074	1.901201	61.6055	31.0842	0.8991	0.0415
	40	0.32	2	32	949 6717	1.925001	67.0240	31.2149	0.8906	0.0494
	40	0.02	1	24	994 0597	1.940415	07.9342	31.0329	0.8964	0.0462
	40	0.49	2	25	004.9007	2.440111	70.9768	29.592	0.9271	0.0317
	40	0.49	2	30	921.2407	2.433/00	70.0152	31.0149	0.926	0.0317
	40	0.45	1	30	1006 400	2.401237	72.9757	30.6364	0.9245	0.0324
	40	0.00	2	20	1000.409	2.920274	70.2121	30.0589	0.9422	0.0244
	40	0.00	2	20	1005.205	2.922022	75.4443	29.5041	0.9414	0.0262
	40	0.00	1	40	1104.102	2.092037	77.1184	30.596	0.9401	0.025
	40	0.00	2	40	1227.020	3.421378	79.6789	28.6756	0.9505	0.0219
	40	0.03	2	41	1227.093	3.38583	78.7134	28.226	0.9523	0.0213
	40	0.00	1	42	1200.009	3.4/0/40	78.2875	28.8438	0.9536	0.0204
	40	1	י ר	43	1302.014	3.798889	77.8734	28.3193	0.9592	0.0189
	40	1	2	44	1430.009	3.81663	//.6165	29.0069	0.958	0.018
	10	04	3	40	1510.724	3.76597	80.4811	28.1495	0.9549	0.0202
	10	0.4	1	40	1540.346	1.647711	55.3826	29.2869	0.8794	0.0488
	10	0.4	2	47	1569.969	1.65937	63.0616	31.3006	0.8792	0.0494
	10	0.4	3	48	1599.591	1.6552	65.3658	33.1906	0.8774	0.049
	10	0.55	1	49	1640.321	1.866304	64.7691	30.5943	0.9061	0.0399
	10	0.55	2	50	1681.051	1.831541	65.9882	30.0864	0.9081	0.0397
	10	0.55	3	51	1/21.781	1.831259	66.1458	32.8499	0.9025	0.0421
	10	0.7	1	52	1//3.62	2.059059	72.8709	31.3669	0.9265	0.0331
	10	0.7	2	53	1825.459	2.0186	65.6895	29.4057	0.9238	0.0323
	10	0.7	3	54	18/7.297	2.029089	72.3919	32.5485	0.9189	0.0364
	10	0.85	1	55	1940.244	2.207733	67.3396	29.4738	0.9337	0.0287
	10	0.85	2	56 	2003.191	2.188607	70.6172	30.8073	0.932	0.0314
	10	0.85	3	57	2066.138	2.189674	72.7602	30.3415	0.9317	0.0307
	10	1	1	58	2140.193	2.403896	67.5463	28.7448	0.9382	0.0272
	10	1	2	59	2214.248	2.418711	74.3731	31.5861	0.9398	0.0253
	10	1	3	60	2288.303	2.404259	70.9447	28.3395	0.9354	0.0285

.

•

Mouse5a

Gain		Exposure 7	Relative In Cum	ulativ	e Accumula	tı SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St Dev
1	00	0.06	1	1	4.443307	7 1.467904	43.5548	32.2989	0.706	0 1219
1	00	0.06	2	2	8.886614	1.51377	57.1264	34.388	0.7258	0 1093
1	00	0.06	3	3	3 13.32992	2 1.5078	56.6324	32.0772	0.7178	0 1118
1	00	0.145	1	4	24.0679 ⁻	2.287311	71.4797	33.2975	0.8417	0 072
1	00	0.145	2	5	5 34.8059 ²	2.260341	67.5991	31.2017	0.8396	0.0666
1	00	0.145	3	6	45.5439	2.311615	69.9141	32.6131	0.8438	0.0705
1	00	0.23	1	7	62.57657	3.119822	78.4037	33.2322	0 8934	0.0455
1	00	0.23	2	8	79.60925	5 3.063385	76.1637	32.3134	0.8858	0.0494
1	00	0.23	3	9	96.64193	3.099259	77.637	32,486	0.8931	0.0467
1	00	0.315	1	10	119.9693	3.872133	78,5093	30,7984	0.9185	0.0407
1	00	0.315	2	11	143.2967	3.890489	85.2743	30,9947	0.9149	0.0372
1	00	0.315	3	12	166.624	3.827437	79.511	31,5683	0.9107	0.0072
1	00	0.4	1	13	196.2461	4.61463	84,9656	30,6047	0.9259	0.041
1	00	0.4	2	14	225.8681	4.697644	86.718	30,4836	0.9329	0.0301
10	00	0.4	3	15	255.4902	4.720844	86,1941	31 5897	0.9322	0.0307
	70	0.15	1	16	266.5984	1.541726	64,5076	33 1464	0.8262	0.0307
-	70	0.15	2	17	277.7067	1.521889	63.6234	33 1206	0.8193	0.0732
-	70	0.15	3	18	288.815	1.526511	66.3763	33 3459	0.8268	0.0743
-	70	0.31	1	19	311.772	2.115244	78 5733	31 4295	0.8964	0.0723
7	70	0.31	2	20	334,7291	2.123341	79 0106	31 1489	0.0304	0.0402
7	70	0.31	3	21	357.6862	2.092074	77 9216	32 1514	0.0943	0.047
-	70	0.47	1	22	392,4921	2,683926	82 5698	30 1576	0.0945	0.0475
7	70	0.47	2	23	427.298	2.670141	87 848	31 2968	0.9200	0.0320
7	70	0.47	3	24	462,1039	2 679637	86 8616	31 0748	0.9204	0.0332
7	70	0.63	1	25	508.7587	3.245519	87 0019	30 2508	0.9240	0.034
7	70	0.63	2	26	555.4134	3.271785	89 5631	28 5702	0.9417	0.0264
7	70	0.63	3	27	602.0681	3 27723	88 8839	30 6957	0.3422	0.0265
7	70	0.79	1	28	660.5717	3 903874	96 2313	28 5921	0.9590	0.0204
7	'0	0.79	2	29	719.0752	3 90563	93 8041	20.0321	0.9315	0.0224
7	'0	0.79	3	30	777 5787	3 897378	88 9249	29.9204	0.9490	0.0212
4	10	0.32	1	31	801.2764	1 621156	72 8141	33 5044	0.9403	0.0237
4	0	0.32	2	32	824 974	1.598259	70.0742	32 4760	0.0717	0.531
4	0	0.32	3	33	848 6717	1 611	71 2131	32.4709	0.0702	0.0547
4	0	0.49	1	34	884 9587	1 923459	78 9008	32.2093	0.0093	0.056
4	0	0.49	2	35	921 2457	1 924267	76 9724	32.004	0.905	0.0412
4	0	0.49	3	36	957 5327	1 936267	75 724	31 0027	0.9013	0.044
4	0	0.66	1	37	1006 409	2 256696	82 2023	30 8707	0.9059	0.0398
4	0	0.66	2	38	1055 285	2 261296	81 8245	31 4522	0.9252	0.033
4	0	0.66	3	39	1104 162	2 271215	82 8500	30.673	0.9204	0.0333
4	0	0.83	1	40	1165 628	2 595356	87 29	30 51 53	0.9247	0.0348
4	0	0.83	2	41	1227 093	2 587807	82 3830	30.5155	0.9290	0.0268
4	0	0.83	3	42	1288 559	2 603385	83 2837	21 212	0.9373	0.0272
4	0	1	1	43	1362 614	2 953437	87 6250	30.0576	0.9200	0.0273
4	0	1	2	44	1436 669	2 93283	84 8032	20.0070	0.9457	0.0239
4	0	1	3	45	1510 724	2 968919	85 1262	29.4324	0.9443	0.0237
1	0	0.4	1	46	1540 346	1 402185	50 0806	30.8059	0.9456	0.0243
1	0	0.4	2	47	1569 969	1.402105	63 470	32.02	0.8224	0.0741
1	0	0.4	3	48	1599 591	1.403141	64 1090	32.3313	0.818	0.0782
1(0	0.55	1	<u>40</u>	1640 321	1.411140	67 6241	33.2134	0.826	0.0752
1(0	0.55	2	50	1681 051	1.53635	67 9057	32.4744	0.8703	0.0562
1(5	0.55	3	51	1721 781	1 535022	65 0022	32.9320	0.8602	0.0601
1(5	0.7	1	52	1773 62	1.000022	70 9176	32.0557	0.8654	0.0564
10	5	07	2	53	1825 450	1 668650	71 22/4	31.9/0/ 32.9240	0.894	0.0451
10)	0.7	3	54	1877 207	1 664511	69 0450	32.0242	0.8906	0.047
10	5	0.85	1	55	1940 244	1 802540	71 9550	30.9059	0.8878	0.0496
10)	0.85	2	56	2002 101	1 802007	11.0002	31.2230	0.9084	0.0384
10)	0.85	2	57	2000.191	1.003207	11.1043	30.8969	0.9075	0.0403
10)	1	1	58	21/0 102	1.002407	13.0090	31.2532	0.904	0.042
10)	1	2	50	2140.193	1.909/03	14.2993	31.1816	0.9169	0.0363
10)	1	3	60	2288 202	2.001341	10.0040	30.5542	0.9141	0.0381
	•	•	5	00	2200.303	2.031039	09.1801	30.7321	0.9023	0.0419

Mouse 5a Tissue

Mouse6a

					wouseoa					
						• .				
Gain		Exposure 1F	Relative Irr Cumu	Ilative	Accumulate	SNR	PO2 Mean	PO2 St T) R2 Mean	R2 St Dev
	10	0.55	1	1	43.10138	2.395671	29.747	23.774	2 0.6966	0 120
	10	0.55	2	2	86.20276	2.401879	34.5	26.658	2 0 7 1 3 7	0 1173
	10	0.55	3	3	129.3041	1.81845	84.5685	32.0814	4 0.857	0.0627
	100	0.06	1	4	134.0061	4.682986	24.7623	26.018	8 0.4258	0 1792
	100	0.06	2	5	138.7081	4.658593	23.5131	26.606	5 0.405	0.1801
	100	0.06	3	6	143.41	4.765929	22.7952	24.3599	9 0.384	0.1863
	40	1	1	7	221.7762	13.38494	23.7151	11.8737	7 0.8749	0.0591
	40	1	2	8	300.1423	12.56751	24.1796	11.357	7 0.8785	0.0559
	40	1	3	9	378.5085	11.90782	24.8932	13.2223	3 0.08741	0.058
	70	0.47	1	10	415.3406	11.61982	25.6125	17.6148	3 0.7872	0.0904
	70	0.47	2	11	452.1726	10.94506	30.1621	22.6711	0.7988	0.0981
	70	0.47	3	12	489.0047	10.63664	24.0272	16.7616	6 0.8049	0.0812
	70	0.79	1	13	550.914	17.24391	28.5788	15.6978	0.8739	0.0585
	70	0.79	2	14	612.8232	17.80051	24.8413	13.3198	0.8583	0.0614
	70	0.79	3	15	674.7325	16.29986	32.1015	17.9156	0.8745	0.0546
	40	0.32	1	16	699.8096	3.725086	31.5125	26.0308	0.6873	0.126
	40	0.32	2	17	724.8868	3.689443	33.1512	24.9948	0.6922	0.1341
	40	0.32	3	18	749.964	3.558114	29.8872	24.3217	0.7124	0.1188
	10	0.85	1	19	816.5752	4.324079	31.8299	21.2095	0.8296	0.0793
	10	0.85	2	20	883.1864	4.427536	30.2618	20.7714	0.8131	0.0804
	10	0.85	3	21	949.7976	4.480621	30.3282	20.2491	0.8137	0.0786
	100	0.4	1	22	981.1441	17.95599	29.9827	24.4624	0.7667	0.0972
	100	0.4	2	23	1012.491	17.47234	34.4066	24.0839	0.7812	0.1028
	100	0.4	3	24	1043.837	17.24619	32.2917	22.7189	0.8017	0.0838
	10	0.4	1	25	1075.183	2.508929	28.1878	24.2145	0.6637	0.1323
	10	0.4	2	26	1106.53	2.468714	33.5509	26.3254	0.6988	0.1246
	10	0.4	3	27	1137.876	1.825029	87.677	32.6266	0.8563	0.0633
	100	0.23	1	28	1155.901	10.65046	39.3371	24.4196	0.8033	0.1778
	100	0.23	2	29	1173.925	4.579829	48.5458	32.0213	0.6916	0.1208
	100	0.23	3	30	1191.949	4.020764	52.5716	30.8783	0.75	0.1065

•

Mouse 6a Vein

Mouse6a

Gain		Evenera 1	Deletive In O		.					
Gain	40	Exposure II	Relative in Cun	nulative	Accumulate	SNR	PO2 Mean	PO2 St. De	R2 Mean	R2 St. Dev
	10	0.55	1	1	43.10138	1.6822	49.3075	30.992	0.7858	0.0913
	10	0.55	2	2	86.20276	1.6965	53.9733	31.3614	0.7942	0.0832
	10	0.55	3	3	129.3041	1.735943	63.2369	31.2701	0.5675	0.1594
	100	0.06	1	4	134.0061	2.055271	50.8819	34.8957	0.6708	0.1244
	100	0.06	2	5	138.7081	2.063707	47.2779	31.4022	0.6704	0.1258
	100	0.06	3	6	143.41	2.067171	51.7946	35.5517	0.6739	0.1228
	40	1	1	7	221.7762	4.362057	73.0184	28.3021	0.9464	0.0234
	40	1	2	8	300.1423	4.249179	72.0658	27.9342	0.9518	0.022
	40	1	3	9	378.5085	4.120564	57.8418	27.2207	0.9444	0.0238
	70	0.47	1	10	415.3406	4.222421	68.0117	31.8056	0.8899	0.0475
	70	0.47	2	11	452.1726	4.276243	55.8318	28.2183	0.9099	0.0373
	70	0.47	3	12	489.0047	4.278157	63.7527	29.2946	0.9031	0.0393
	70	0.79	1	13	550.914	6.58805	66.3317	28.4793	0.9351	0.0298
	70	0.79	2	14	612.8232	6.551957	70.1753	29.356	0.933	0.0287
	70	0.79	3	15	674.7325	6.764686	72.0691	29,7986	0.932	0.031
	40	0.32	1	16	699.8096	2.113286	52,798	30.8152	0.8222	0.07808
	40	0.32	2	17	724.8868	2.11605	55.6847	31.2029	0.8344	0 0701
	40	0.32	3	18	749.964	2.062079	53.8808	30.6514	0.8285	0.0712
	10	0.85	1	19	816.5752	2.495886	61.0584	32,456	0.8952	0.042
	10	0.85	2	20	883.1864	2.520514	62,985	29 186	0.8977	0.0434
	10	0.85	3	21	949.7976	2,505529	61.0581	29 8639	0.8956	0.0456
	100	0.4	1	22	981.1441	8.709564	62,1457	29 551	0.8809	0.0400
	100	0.4	2	23	1012.491	8.804207	60,9789	31 6326	0.8811	0.0544
	100	0.4	3	24	1043.837	8.610229	59 3866	31 1957	0.0011	0.0521
	10	0.4	1	25	1075.183	1 690429	52 2744	31 7192	0.0012	0.0521
	10	0.4	2	26	1106.53	1 685571	52 9881	30 6631	0.7302	0.004
	10	0.4	3	27	1137.876	1 723443	59 5982	32 6467	0.7313	0.0055
	100	0.23	1	28	1155.901	5 182893	53 3846	32 1763	0.3731	0.1000
	100	0.23	2	29	1173 925	4 542164	42 7674	31 0102	0.0201	0.0700
	100	0.23	3	30	1191 949	3 760886	61 7685	31 7414	0.0033	0.1334
			•	00	1101.040	5.700000	01.7000	51.7414	0.0302	0.073

Mouse 6a Artery

.

.

Mouse6a

0-1-	-	-							
Gain	Exposure	Relative In	Cumulative	Accumulat	SNR	PO2 Mean	PO2 St. D€	R2 Mean	R2 St. Dev
10	0.55	5 1	1	43.10138	1.59845	45.0042	29.1851	0.7246	0.1119
10	0.55	5 2	2	86.20276	1.575086	51.6795	30.9596	0.7418	0.1035
10	0.55	5 3	3	129.3041	1.480793	65.2168	33.7728	0.7545	0.1029
100	0.06	i 1	4	134.0061	1.761621	42.2214	33.8521	0.5307	0.0168
100	0.06	2	5	138.7081	1.798329	38.8014	31.7598	0.4969	0.1708
100	0.06	3	6	143.41	1.77115	31.8993	27.8824	0.5065	0.1622
40) 1	1	7	221.7762	3.737871	62.973	30.1596	0.8852	0.0512
40	1 1	2	8	300.1423	3.698029	62.1602	30.1193	0.9089	0.0396
40	1	3	9	378.5085	3.594121	57.3765	27.5421	0.9029	0.0443
70	0.47	1	10	415.3406	3.6734	65.3405	33.441	0.8398	0.0688
70	0.47	2	11	452.1726	3.74505	56.2466	31.1747	0.8457	0.0689
70	0.47	3	12	489.0047	3.669836	53.4364	30.1142	0.8416	0.0686
70	0.79	1	13	550.914	5.616071	63.4912	30.5935	0.8961	0.0454
70	0.79	2	14	612.8232	5.558986	65.3312	30.5295	0.8959	0.0436
70	0.79	3	15	674.7325	5.400007	68.5534	31.195	0.8979	0.0434
40	0.32	1	16	699.8096	1.866543	53.3638	33.2487	0.7561	0.0984
40	0.32	2	17	724.8868	1.875314	52.4893	32.6618	0.75	0.1013
40	0.32	3	18	749.964	1.861321	50.7679	32.6359	0.7472	0.1015
10	0.85	1	19	816.5752	2.172771	60.5152	32.4011	0.85	0.0736
10	0.85	2	20	883.1864	2.170229	62.1143	32.2467	0.8554	0.0596
10	0.85	3	21	949.7976	2.193186	59.9848	32.0708	0.8482	0.0662
100	0.4	1	22	981.1441	6.969193	57.3756	30.6339	0.837	0.0681
100	0.4	2	23	1012.491	6.822393	60.7537	31.5668	0.8489	0.0622
100	0.4	3	24	1043.837	· 6.97665	60.2811	31.8092	0.8377	0.0685
10	0.4	1	25	1075.183	1.584471	48.2846	30.6572	0.7309	0.1075
10	0.4	2	26	1106.53	1.533786	53.0867	32.2792	0.741	0.1042
10	0.4	3	27	1137.876	1.472107	65.0854	33.8918	0.7595	0.1016
100	0.23	1	28	1155.901	4.37225	53.9694	31.3088	0.7872	0.0858
100	0.23	2	29	1173.925	3.440464	53.8152	32.6526	0.726	0.1056
100	0.23	3	30	1191.949	3.291336	58.3846	32.8472	0.7777	0.0897
						-			

•
Mouse 6a Tissue

. .

Mouse7a

Gain		Exposure 1	Relative Irr Cur	nulativ	e Accumula	tı SNR	PO2 Mean	PO2 St De	R2 Mean	R2 St Dev
	40	0.32	1		1 4.60629	9 2.252593	68.8044	31.2106	0.916	0 0405
	40	0.32	2	2	2 29.1732	3 2.912644	93.8139	22.9927	0.8931	0.0465
	40	0.32	3	3	3 53.74016	5 2.362837	71.1036	31,2493	0 9292	0.0314
	40	0.49	1	4	91.35827	7 3.313741	18.1823	8.0122	0.8052	0.0672
	40	0.49	2	5	5 128.9764	2.9376	74.3462	29.6955	0.9386	0.0271
	40	0.49	3	e	6 166.5945	5 3.087667	22.5538	7.59	0.8945	0.0217
	40	0.66	1	7	217.2638	3.759141	31.5466	12.2421	0.8942	0.0387
	40	0.66	2	8	3 267.9331	4.195222	110.3499	24.81	0.9695	0.0146
	40	0.66	3	ç	318.6024	4.097644	17.6724	9.503	0.8417	0.0682
	40	0.83	1	10	382.3228	4.3604	35.4445	18.2562	0.8673	0.0472
	40	0.83	2	11	446.0433	4.583022	71.9903	26.6711	0 8998	0.0329
	40	0.83	3	12	509.7638	4.093296	88.2576	29.4925	0.9599	0.0185
	40	1	1	13	586.5354	4.306659	16.1251	3.4174	0.8952	0.0357
	40	1	2	14	663.3071	6.176689			0.9434	0.0197
	40	1	3	15	740.0787	4.084481	16.8419	3.2154	0.9454	0.0225
1	00	0.06	1	16	744.685	2.246259	64.9049	32.8002	0.8072	0.0835
1	00	0.06	2	17	749.2913	2.219704	42.3699	26.7311	0.8079	0.0758
1	00	0.06	3	18	753.8976	2.238489	61.0427	32.2805	0.8101	0.0765
1	00	0.145	1	19	765.0295	3.746904	43.5304	24.0178	0.8875	0.0467
1	00	0.145	2	20	776.1614	3.935844	36.1372	20.3349	0.8912	0.0407
1	00	0.145	3	21	787.2933	3.687874	42.6731	23 6777	0.885	0.0474
10	00	0.23	1	22	804.9508	6.038437	87.2633	29.6702	0.9194	0.0474
10	00	0.23	2	23	822.6083	5.688748	70.2286	31,1108	0.8894	0.0301
1(00	0.23	3	24	840.2657	5.29257	68.2215	31 8766	0.8955	0.0401
1(00	0.315	1	25	864.4488	6.240437	51,9048	27 1945	0.8963	0.0401
1(00	0.315	2	26	888.6319	6.65763	39.9473	21 8943	0.894	0.0429
1(00	0.315	3	27	912.815	7.455037	59.0961	30 0235	0.004	0.0400
10	00	0.4	1	28	943.5236	9.219007	94,2311	28 8572	0.835	0.0303
7	70	0.15	1	29	955.0394	2.046859	51,2416	31 2838	0.000	0.0207
7	70	0.15	2	30	966.5551	2.103807	60 2566	30 4709	0.8473	0.0900
7	70	0.15	3	31	978.0709	2.057526	58 6069	31 2342	0.0475	0.0002
7	70	0.31	1	32	1001.87	3.057415	69.5822	31 6809	0.7000	0.0021
7	70	0.31	2	33	1025.669	3.031607	66 3983	29 546	0.0001	0.0419
7	0'	0.31	3	34	1049.469	3.132519	52,9377	28 4965	0.9103	0.0378
7	0	0.47	1	35	1085.551	4.344667	87,2942	29 948	0.0007	0.0001
7	'0	0.47	2	36	1121.634	4,756748	84 5099	30 4683	0.3404	0.0230
7	0	0.47	3	37	1157.717	3.872119	33 8376	14 7263	0.95	0.0312
7	0	0.63	1	38	1206.083	6.0336	93 6515	29 4582	0.9100	0.0342
7	0	0.63	2	39	1254,449	4.875333	85 1731	30 1613	0.9505	0.0293
7	0	0.63	3	40	1302.815	4.334222	29 5939	9 4831	0.9525	0.0215
7	0	0.79	1	41	1363.465	5.669956	34 4212	10 1276	0.9500	0.0253
7	0	0.79	2	42	1424,114	6.588274	70 0455	26 2873	0.9304	0.019
7	0	0.79	3	43	1484,764	6.216778	49 1708	21 5662	0.9207	0.0273
1	0	0.4	1	44	1515.472	1,733859	75 2444	32 2363	0.9311	0.0271
1	0	0.4	2	45	1546.181	1.6388	46 0037	25 2196	0.0000	0.0502
1	0	0.4	3	46	1576 89	1 7436	70 4221	34 0038	0.0009	0.0461
1	0	0.55	1	47	1619,114	1 907163	63 6227	29.8465	0.0044	0.0549
1	0	0.55	2	48	1661.339	1 9518	70 7966	29.0400	0.9001	0.0431
1	0	0.55	3	49	1703 563	1 873022	59 425	28 1104	0.9100	0.0349
10	0	0.7	1	50	1757 303	2 156059	85 6312	20.1104	0.9051	0.0413
1(0	0.7	2	51	1811 043	2 239696	68 6800	23.4100	0.93/4	0.0273
1(0	0.7	3	52	1864 783	2 457726	64 1286	31 8605	0.0794	0.0509
10	0	0.85	1	53	1930 030	2 350062	70 6910	31.0005	0.7605	0.0918
1(C	0.85	2	54	1995 295	2 371037	73 00042	29.0201	0.93/4	0.02/6
10	C	0.85	3	55	2060 551	2 319556	58 2526	30.0014	0.9367	0.02/8
10	C	1	1	56	2137 323	2 067250	11 1204	21.1059	0.9188	0.0347
10)	1	2	57	2214 004	2 626779	51 75	2.1/01	0.894	0.0326
10)	1	- 3	58	2290 866	2 507156	J4.10 61 1075	20.4091	0.9178	0.0338
		•	-	00	-200.000	2.001100	04.12/5	21.2012	0.9288	0.0275

Mouse 7a Vein

Mouse7a

Gain	E	Exposure 1	Relative In Cum	ulativ	e Accumula	tı SNR	PO2 Mean	PO2 St De	R2 Mean	R2 St Dev
	40	0.32	1	1	4.606299	1.683548	70.8455	30,6055	0.8755	0.0567
	40	0.32	2	2	29.17323	3 2.092867	109.2541	38.9873	0.8609	0.0007
	40	0.32	3	З	53.74016	6 1.70603	65.4583	30.5117	0.9023	0.0077
	40	0.49	1	4	91.35827	2.13297	29.8225	15.9387	0.8525	0.0400
	40	0.49	2	5	128.9764	2.090467	80.8359	32,6677	0.9106	0.0000
	40	0.49	3	6	166.5945	5 2.123956	35.2091	18,5705	0.8542	0.000
	40	0.66	1	7	217.2638	3 2.288556	34.5426	17.6597	0.8929	0.0455
	40	0.66	2	8	267.9331	2.558867	102.0563	28.6738	0.9522	0.040
	40	0.66	3	9	318.6024	2.528215	25.5898	12.69	0.8706	0.0523
•	40	0.83	1	10	382.3228	2.713681	47.9954	24.9178	0.8683	0.051
4	40	0.83	2	11	446.0433	2.59	49.2206	22.6919	0.8982	0.0378
	40	0.83	3	12	509.7638	2.617644	91.487	31,7326	0.9345	0.0305
4	40	1	1	13	586.5354	2.700844	23.0843	6.8782	0.9129	0.0317
4	40	1	2	14	663.3071	3.329741	113.1708	21.8803	0.9041	0.0339
4	40	1	3	15	740.0787	2.706133	26.42	7.7907	0.9232	0.0325
1(00	0.06	1	16	744.685	1.730644	69.7565	32.0596	0.751	0 1026
1(00	0.06	2	17	749.2913	1.699215	52.8509	31.8979	0.7383	0 1031
1(00	0.06	3	18	753.8976	1.737563	69.9195	32.8344	0.7611	0.1022
10	00	0.145	1	19	765.0295	2.649933	66.4552	30.6936	0.8489	0.0647
10	00	0.145	2	20	776.1614	2.678733	56.4394	29.1715	0.8523	0.0619
10	00	0.145	3	21	787.2933	2.516904	67.323	32.3404	0.8276	0.0752
10	00	0.23	1	22	804.9508	3.2918	62.1198	30.8858	0.8616	0.0615
10	00	0.23	2	23	822.6083	3.403215	64.044	34.0146	0.82	0.0772
10	00	0.23	3	24	840.2657	3.348533	69.9095	33.634	0.8372	0.0727
10	00	0.315	1	25	864.4488	3.112889	48.6219	27.658	0.8539	0.0569
10	0	0.315	2	26	888.6319	3.726667	38.4066	22.0276	0.8561	0.0596
10	0	0.315	3	27	912.815	4.166615	52.0204	29.6071	0.8271	0.0683
10	0	0.4	1	28	943.5236	5.740933	97.6957	25.6182	0.9102	0.0387
7	0	0.15	1	29	955.0394	1.550393	41.8279	27.4844	0.7219	0.1023
7	0	0.15	2	30	966.5551	1.559015	52.0781	31.1217	0.77	0.094
7	0	0.15	3	31	978.0709	1.589844	55.3086	31.3081	0.7057	0.1217
7	0	0.31	1	32	1001.87	2.189637	70.9532	34.4801	0.8472	0.0636
7	0	0.31	2	33	1025.669	2.104674	62.4106	30.1482	0.8676	0.0567
7	0	0.31	3	34	1049.469	2.087281	42.4885	25.2776	0.8108	0.0743
7	0	0.47	1	35	1085.551	2.784081	77.8774	31.3127	0.9147	0.038
7	0	0.47	2	36	1121.634	3.00583	80.8444	32.0801	0.889	0.0474
7	0	0.47	3	37	1157.717	2.722074	49.8552	24.7003	0.8827	0.0473
7	0	0.63	1	38	1206.083	3.826711	81.2233	29.8977	0.9007	0.0457
7	0	0.63	2	39	1254.449	3.255156	83.2558	29.6647	0.9241	0.0335
7	0	0.63	3	40	1302.815	2.968852	38.5874	17.805	0.9089	0.0359
7	0	0.79	1	41	1363.465	3.773815	53.7616	21.4293	0.9377	0.0261
7	0	0.79	2	42	1424.114	4.106644	79.8841	31.1844	0.9123	0.0363
7	D	0.79	3	43	1484.764	3.972096	59.8501	27.487	0.9091	0.0357
1	0	0.4	1	44	1515.472	1.424985	61.8534	31.6675	0.7936	0.0833
1	5	0.4	2	45	1546.181	1.405481	59.5395	31.7441	0.8325	0.0685
10	5	0.4	3	46	1576.89	1.428341	57.2696	30.5162	0.778	0.0948
1()	0.55	1	47	1619.114	1.543726	66.0749	34.059	0.8492	0.0651
1()	0.55	2	48	1661.339	1.545652	66.5736	34.1983	0.8652	0.0552
1()	0.55	3	49	1703.563	1.486637	54.8662	29.4067	0.8387	0.0719
1()	0.7	1	50	1757.303	1.687356	80.1336	34.1151	0.8963	0.0459
1()	0.7	2	51	1811.043	1.765274	67.9196	34.4058	0.8382	0.0659
10	J	0.7	3	52	1864.783	1.847481	56.4528	31.6574	0.7742	0.0955
1(J	0.85	1	53	1930.039	1.802681	67.5455	31.3095	0.9001	0.0432
1()	0.85	2	54	1995.295	1.845844	70.3832	31.0639	0.8983	0.0445
10)	0.85	3	55	2060.551	1.851563	61.9221	31.323	0.8894	0.0494
10)	1	1	56	2137.323	1.762511	19.3637	5.7828	0.8948	0.0379
10)	1	2	57	2214.094	2.028289	59.6783	28.4991	0.892	0.0437
10	1	1	3	58	2290.866	2.023119	63.3193	29.3132	0.9056	0.0399

Mouse 7a Artery

SNR

Mouse7a

Gain		Exposure 1	Relative In Cum	ulativ	e Accumula	t SNR	PO2 Mean		R2 Mean	P2 St Day
	40	0.32	1		4.606299	9 1.38543	66.0312	34 0154		
	40	0.32	2	2	2 29.17323	3 1.544096	77 784	33 3576	0.0019	0.0001
	40	0.32	3	3	3 53.74016	5 1.416889	62 688	31 9904	0.7304	0.0005
	40	0.49	1	4	91.35827	7 1.660963	47,4943	28 0336	0.020	0.0719
	40	0.49	2	5	5 128.9764	1.642496	71 4634	31 565	0.0203	0.0073
	40	0.49	3	e	166.5945	5 1.634148	55 2751	30 2666	0.8556	0.0500
	40	0.66	1	7	217.2638	3 1.82417	58 1615	29 6712	0.0000	0.0507
	40	0.66	2	8	267.9331	1.928259	90 7991	28.4605	0.0791	0.0516
	40	0.66	3	g	318.6024	1 865067	51 7046	20.4000	0.9202	0.0312
	40	0.83	1	10	382.3228	1.988756	67 5634	31 8492	0.0020	0.0021
	40	0.83	2	11	446.0433	2.036185	75 6843	32 2844	0.0013	0.0400
	40	0.83	3	12	509.7638	1.978185	86 6363	33 1054	0.9023	0.0413
	40	1	1	13	586.5354	2.062859	50.3835	27 2298	0.9100	0.037
	40	1	2	14	663.3071	2.318941	101 0003	27 5538	0.0070	0.0390
	40	1	3	15	740.0787	2.136119	46,2956	23 7173	0.0217	0.0359
1	00	0.06	1	16	744.685	1.423081	53 9747	34 1192	0.015	0.0358
1	00	0.06	2	17	749.2913	1.419022	46.7842	32 3321	0.0400	0.1304
1	00	0.06	3	18	753.8976	1.457985	58 1187	35 4562	0.0001	0.1322
1	00	0.145	1	19	765.0295	1.943185	59 3999	32 5927	0.0711	0.1308
10	00	0.145	2	20	776.1614	1,999956	53 8148	31 4264	0.7854	0.0911
1(00	0.145	3	21	787.2933	1.986556	57 6375	31 4136	0.7004	0.0076
10	00	0.23	1	22	804.9508	2.573422	63 691	33 1865	0.8236	0.091
1(00	0.23	2	23	822.6083	2.591556	65 2326	33 3333	0.0200	0.0769
1(00	0.23	3	24	840.2657	2 569689	64 4844	32 7098	0.0030	0.0606
10	00	0.315	1	25	864.4488	2.987637	62 2819	33 5227	0.0132	0.0796
10	00	0.315	2	26	888.6319	2 958793	53 9284	32 0208	0.0395	0.0671
10	00	0.315	3	27	912.815	3.329785	57 3698	30 9929	0.0000	0.0093
10	00	0.4	1	28	943.5236	3 900837	80 4918	32 200	0.0210	0.0713
7	'0	0.15	1	29	955.0394	1 389541	47 1028	31 6236	0.0000	0.0491
7	'0	0.15	2	30	966 5551	1.391104	51 3252	33 1651	0.0000	0.1315
7	0	0.15	3	31	978.0709	1 422733	53 9557	34 0287	0.0993	0.121
7	0	0.31	1	32	1001.87	1 880622	68 3289	33 6503	0.073	0.1277
7	0	0.31	2	33	1025.669	1 812652	65 1475	33 7344	0.0204	0.0736
7	0	0.31	3	34	1049,469	1 809904	58 0019	33 8576	0.0275	0.0745
7	0	0.47	1	35	1085.551	2.259415	76 3864	32 7919	0.7019	0.0912
7	0	0.47	2	36	1121.634	2.272785	71 3931	31 5558	0.000	0.0515
7	0	0.47	3	37	1157.717	2.238052	57 2309	31 1347	0.0020	0.0562
7	0	0.63	1	38	1206.083	2 8646	80 5134	32 2844	0.0702	0.056
7	0	0.63	2	39	1254,449	2.664081	77 7624	31 2216	0.0000	0.0463
7	0	0.63	3	40	1302.815	2.443696	55 4961	29 5883	0.9031	0.0429
7	0	0.79	1	41	1363.465	2,969593	61 0717	27 5278	0.0342	0.0400
7	0	0.79	2	42	1424.114	3.354763	75 4166	31 4166	0.9220	0.0320
7	0	0.79	3	43	1484.764	3.187311	65 5874	29 784	0.9113	0.0375
1	0	0.4	1	44	1515.472	1.322274	60 1128	34 4292	0.307	0.0395
1	0	0.4	2	45	1546.181	1.297756	55 1515	33 5696	0.7518	0.104
1	0	0.4	3	46	1576.89	1.322837	58 3417	33 2074	0.7267	0.100
1)	0.55	1	47	1619.114	1.401081	62 4011	33 4096	0.7207	0.1143
1()	0.55	2	48	1661.339	1.405526	64 5927	31 8958	0.8138	0.0004
1()	0.55	3	49	1703.563	1.382644	56 8192	33 570	0.0130	0.0798
1()	0.7	1	50	1757.303	1.517896	72 3317	32 0207	0.0094	0.0792
1()	0.7	2	51	1811.043	1.504911	63 9293	32 8063	0.0004	0.0002
1()	0.7	3	52	1864.783	1.6104	57 8424	32 2302	0.0001	0.0022
10)	0.85	1	53	1930.039	1.60317	64 5091	30 0408	0.1042	0.0909
10)	0.85	2	54	1995,295	1.595178	64 1368	31 8810	0.0700	0.0501
10)	0.85	3	55	2060.551	1.668993	62 107	32 161	0.0000	0.0500
10)	1	1	56	2137.323	1.622763	25 8606	13 2612	0.0044	0.057
10)	1	2	57	2214.094	1.730674	61 6675	30 8711	0.0009	0.0464
10)	1	3	58	2290,866	1.725452	66 1538	32 1/01	0.0009	0.0007
								52.1731	0.0113	0.0522

Mouse 7a Tissue

.

Mouse8a

Gain		Exposure 7	Relative Irr Cum	ulativ	e Accumula	tı SNR	PO2 Mean	PO2 St De	R2 Mean	R2 St Dev
	100	0.06	1	1	4.54252	2 2.043363	51.2522	32,5461	0 7657	0.0003
	100	0.06	2	2	9.085039	2.060933	48.1868	31.5843	0 7313	0.0000
	100	0.06	3	3	13.62756	3 2.054281	47.5757	31 4819	0 7309	0.1103
	100	0.145	1	4	24.6053	3.756933	59.2386	31,5466	0.8593	0.1092
	100	0.145	2	5	35.58307	3.577726	55,1357	30,7004	0.8557	0.0000
	100	0.145	3	6	46.56083	3 3.558311	51,7116	29 1017	0.0007	0.0002
	100	0.23	1	7	63.97382	2 5.109081	55.4518	29 0772	0.8961	0.0049
	100	0.23	2	8	81.38681	5.036807	56 982	30 9034	0.0001	0.040
	100	0.23	3	9	98,7998	5.018837	53 1879	27 7022	0.0072	0.0470
	100	0.315	1	10	122.648	7.346926	49 7864	24 8386	0.0301	0.0458
	100	0.315	2	11	146.4963	7.314015	52 3969	24.0000	0.0100	0.0347
	100	0.315	3	12	170.3445	7.181674	54 1517	26 7849	0.3223	0.034
	100	0.4	1	13	200.628	8.989585	52,9003	24 4024	0.0101	0.0301
	100	0.4	2	14	230.9114	8.512652	46.0958	22 0689	0.0070	0.0273
	100	0.4	3	15	261.1949	8.908911	52.0602	23 8576	0.0047	0.0295
	70	0.15	1	16	272.5512	2.091956	47 7034	28 271	0.00-0	0.0279
	70	0.15	2	17	283.9075	2.101385	48 7137	28 187	0.0020	0.0708
	70	0.15	3	18	295.2638	2,139459	48 9345	29 2114	0.0240	0.0719
	70	0.31	1	19	318,7335	3 31497	53 7492	27 7283	0.052	0.0704
	70	0.31	2	20	342.2031	3 311104	51 7378	26 8534	0.9007	0.0407
	70	0.31	3	21	365.6728	3 18703	49 638	26 3136	0.9001	0.0415
	70	0.47	1	22	401 2559	4 495763	54 4591	25,8806	0.0010	0.043
	70	0.47	2	23	436.839	3 996444	61 1229	27 2150	0.9321	0.0304
	70	0.47	3	24	472.422	3 949319	61 0035	28 2116	0.9332	0.0279
	70	0.63	1	25	520,1185	4 727763	58 693	25.2110	0.9323	0.0292
	70	0.63	2	26	567 815	4 782474	57 4444	25.4072	0.9449	0.0237
	70	0.63	3	27	615 5114	4 746578	58 75	26.2106	0.9432	0.0243
	70	0.79	1	28	675 3213	5 785104	64 7497	26.2100	0.9440	0.0243
	70	0.79	2	29	735 1311	5 890881	60 0488	20.3041	0.9047	0.0194
	70	0.79	3	30	794 9409	5 915519	61 4800	24.4140	0.9042	0.0205
	40	0.32	1	31	819 1677	1 99837	58 31/0	24.3235	0.9000	0.0189
	40	0.32	2	32	843 3945	1 9532	53 2416	31.9005	0.0000	0.0514
	40	0.32	3	33	867 6213	1 935326	54 2847	20.40	0.0707	0.0518
	40	0.49	1	34	904 7185	2 452867	59 /033	20.0299	0.0700	0.0551
	40	0.49	2	35	941 8157	2 395215	58 5932	28 0129	0.9107	0.0339
	40	0.49	3	36	978 913	2 482926	59 7318	20.9130	0.9103	0.0405
	40	0.66	1	37	1028 881	2 93803	56 9624	29.0200	0.9103	0.0359
	40	0.66	2	38	1078 848	2 959311	56 1154	20.015	0.9330	0.0285
	40	0.66	3	39	1128 816	2.000011	50 6643	20.2300	0.9330	0.0292
	40	0.83	1	40	1191 654	3 324244	57 2343	21.3132	0.9312	0.0299
	40	0.83	2	41	1254 493	3 297748	60 4372	24.2072	0.944	0.0246
	40	0.83	- 3	42	1317 331	3 368480	58 6105	20.3299	0.9432	0.0248
	40	1	1	43	1393 039	3 702303	58 2010	25.1595	0.9424	0.0249
	40	1	2	44	1468 748	3 708593	65 2030	25.1145	0.9515	0.0208
	40	1	3	45	1544 457	3 851310	55 7306	20.4707	0.9517	0.0218
	10	0.4	1	46	1574 74	1 578615	52 2828	23.2100	0.9033	0.0203
	10	0.4	2	47	1605 024	1.576244	52,3020	20.0403	0.0010	0.0566
	10	0.4	3	48	1635 307	1 583110	54 5037	29.344	0.0032	0.0592
	10	0.55	1	49	1676 947	1 758985	58 0021	29.0440	0.0099	0.059
	10	0.55	2	50	1718 587	1.750505	55 9741	29.2707	0.8896	0.0479
	10	0.55	3	51	1760 226	1.707104	53 0076	20.0490	0.8944	0.0451
	10	0.7	1	52	1813 222	1.743013	56 4922	20.5200	0.8927	0.0471
	10	0.7	2	53	1866 210	1 946533	57 1102	20.0009	0.9069	0.0408
	10	0.7	3	54	1919 215	1 915056	51.1100	20.0041	0.9103	0.0397
	10	0.85	1	55	1983 567	2 141680	54.4310 60 0497	20.3300	0.909	0.0378
	10	0.85	2	56	2047 010	2 075600	56 9/07	20.0002	0.9245	0.0326
	10	0.85	- 3	57	2112 272	2.073022	57 2274	20.039	0.9215	0.0328
	10	1	1	58	2187 08	2.11011	50 215	27.0946	0.9215	0.0359
	10	1	2	59	2263 680	2.204000	09.040 60 1250	21.4214	0.9323	0.0294
	10	1	3	60	2330 309	2.204920	57 0600	20.005	0.9312	0.0286
	-	•	-	00	2000.000	2.240/11	21.3003	∠0.4987	0.9306	0.0302

Mouse 8a Vein

.

Mouse8a

Gain	I	Exposure 1Re	elative Irr Cum	nulativ	e Accumula	t SNR	PO2 Mean	PO2 St De	R2 Mean	P2 St Day
	100	0.06	1		4.54252	1.689133	52 1644	32 5389	0 7251	NZ SI. Dev
	100	0.06	2	2	2 9.085039	1.7336	53.0021	33 1555	0.7231	0.1117
	100	0.06	3	3	3 13.62756	1.742874	51 3431	30 5347	0.7375	0.1026
	100	0.145	1	4	4 24.60531	2.808822	62 927	32 2955	0.7500	0.1135
	100	0.145	2	5	5 35.58307	2.774763	63 0811	32 674	0.0403	0.000
	100	0.145	3	e	46.56083	2.737185	63 7751	32 9013	0.8402	0.0030
	100	0.23	1	7	63.97382	3 770526	66 4799	31 2111	0.0402	0.0000
	100	0.23	2	Ē	81.38681	3 755533	67 210	31 5077	0.0904	0.0483
	100	0.23	3	ç	98 7998	3 759215	70 2678	21 6041	0.0029	0.0504
	100	0.315	1	10	122 648	4 630126	65 441	20 9251	0.8925	0.0483
	100	0.315	2	11	146 4963	4 905785	67 4610	29.0351	0.9097	0.0389
	100	0.315	3	12	170 3445	4 629519	67 0091	29.9911	0.9142	0.0364
	100	0.4	1	13	200 628	5 705681	67.0001	30.9477	0.9099	0.0392
	100	0.4	2	14	230 9114	5 516710	69 0200	29.7154	0.9265	0.033
	100	0.4	3	15	261 1949	5 5010719	67 7005	31.7979	0.9273	0.0307
	70	0.15	1	16	201.1543	1 675922	50 9029	30.0347	0.9229	0.0348
	70	0.15	2	17	283 0075	1.070022	59.6028	31.0707	0.81/6	0.0745
	70	0.15	2	18	205.9075	1.070703	50.065	30.516	0.8169	0.0743
	70	0.10	1	10	295.2050	1.090193	61.169	32.6118	0.8234	0.0787
	70	0.31	2	20	242 2024	2.41583	70.5662	32.7382	0.8985	0.0437
	70	0.31	2	20	342.2031	2.3/84/4	64.969	29.9347	0.8896	0.0476
	70	0.31	3	21	305.0728	2.333822	65.8583	32.8095	0.8938	0.0454
	70	0.47	1	22	401.2559	2.997615	65.7786	28.0036	0.9252	0.0333
	70	0.47	2	23	436.839	3.01/874	71.8051	29.6283	0.9216	0.0354
	70	0.47	3	24	4/2.422	2.973022	72.5883	30.323	0.9163	0.0367
	70	0.03	1	25	520.1185	3.592215	76.6084	31.32	0.9361	0.0284
	70	0.03	2	26	567.815	3.619156	70.9096	29.8143	0.9345	0.0279
	70	0.03	3	27	615.5114	3.606407	73.7711	30.7518	0.9304	0.03
	70	0.79	1	28	675.3213	4.295281	75.7892	29.7497	0.9463	0.024
	70	0.79	2	29	735.1311	4.256904	74.358	29.3394	0.9457	0.0241
	10	0.79	3	30	794.9409	4.263778	75.2624	29.8057	0.944	0.0238
	40	0.32	1	31	819.1677	1.719015	63.0575	31.2391	0.8677	0.055
	40	0.32	2	32	843.3945	1.671622	65.743	32.5224	0.8653	0.0537
	40	0.32	3	33	867.6213	1.677726	62.4427	30.9485	0.861	0.0594
	40	0.49	1	34	904.7185	2.060993	66.0117	28.7913	0.9024	0.0381
	40	0.49	2	35	941.8157	2.008822	67.8351	30.0332	0.9008	0.0435
	40	0.49	3	36	978.913	2.030911	63.5411	30.131	0.8984	0.0421
	40	0.66	1	37	1028.881	2.343044	73.0713	31.9102	0.9226	0.0347
	40	0.66	2	38	1078.848	2.380163	67.6297	30.8956	0.9241	0.0327
	40	0.66	3	39	1128.816	2.285726	70.2035	30.2747	0.9171	0.0345
	40	0.83	1	40	1191.654	2.659096	73.2779	30.2291	0.9341	0.0287
	40	0.83	2	41	1254.493	2.699689	71.7243	30.4414	0.9334	0 0297
	40	0.83	3	42	1317.331	2.696096	70.5876	28.8809	0.9358	0.0293
	40	1	1	43	1393.039	2.959156	73.3168	29,1648	0 9443	0.0233
	40	1	2	44	1468.748	3.001519	69.9585	27.4935	0.9425	0.0200
	40	1	3	45	1544.457	3.037867	76.9408	29.8755	0.9458	0.0240
	10	0.4	1	46	1574.74	1.451067	59.5751	32.0203	0.8433	0.0220
	10	0.4	2	47	1605.024	1.435281	59,121	31.8087	0.839	0.0663
	10	0.4	3	48	1635.307	1.42597	54,2659	31 4928	0.8328	0.0003
	10	0.55	1	49	1676.947	1.563756	64 1448	32 4539	0.8725	0.0718
	10	0.55	2	50	1718.587	1.586489	62 9891	30 8988	0.8781	0.0522
	10	0.55	3	51	1760.226	1.565719	65 3893	33 0551	0.8741	0.0515
	10	0.7	1	52	1813.222	1.743089	66 5638	29 6604	0.8005	0.0544
	10	0.7	2	53	1866.219	1.691289	67 5443	32 3416	0.0330	0.0417
	10	0.7	3	54	1919.215	1.706126	67 2317	31 1161	0.0924	0.0457
	10	0.85	1	55	1983 567	1 829096	65 4657	20 0242	0.0935	0.04/6
	10	0.85	2	56	2047 919	1 858007	66 2000	23.3242	0.9093	0.0395
	10	0.85	3	57	2112 272	1 845006	68 2795	30.2004	0.9149	0.0358
	10	1	1	58	2187 98	1 998/15	72 8260	20 5540	0.9137	0.0367
	10	1	2	59	2263 680	1 951222	12.0200 60 7115	30.3313	0.9244	0.0351
	10	1	- 3	60	2330 308	1 007756	UU./ 140	29.042/	0.9196	0.0357
		•	-	00		1.332700	12.2102	30.368	0.9246	0.0343

Artery (2)

Mouse 8a Artery

Mouse8a

Gain		Exposure 7	Relative Irr Cun	nulativ	/e Accumula	ti SNR	PO2 Mean	PO2 St De	R2 Mean	R2 St Dev
	100	0.06	1		1 4.54252	1.321148	48.438	34 3619	0.6361	0 1464
	100	0.06	2	:	2 9.085039	1.332244	47,9535	31 4493	0.0001	0.1404
	100	0.06	3		3 13.62756	1.37483	50 1646	32 5265	0.0309	0.1419
	100	0.145	1		4 24.60531	1.890274	65 5605	35 3906	0.0702	0.1209
	100	0.145	2	(5 35.58307	1.832244	67 3054	34 6884	0.7903	0.0934
1	100	0.145	3	(6 46 56083	1 902489	59 696	34 220	0.7907	0.0894
1	100	0.23	1	-	7 63 97382	2 491437	72 3287	22 9070	0.7925	0.0925
1	100	0.23	2	ş	3 81 38681	2 376304	71 6750	32.09/9	0.8615	0.0624
1	00	0.23	3	ç	98 7998	2.070004	67 5774	32.7111	0.8499	0.0653
1	00	0.315	1	10) 122 648	2.430111	72 2652	34.8443	0.8498	0.0652
1	00	0.315	2	11	146 4063	3 112667	75.2003	34.3795	0.8811	0.0535
1	00	0.315	3	10	170 3445	3.113007	75.2075	33.4604	0.8824	0.0524
1	00	0.4	1	12	2 200 629	3.200	08.0415	31.3756	0.8774	0.0562
1	00	0.4	2	1/	200.020	2 626044	73.6296	30.4495	0.8994	0.0441
1	00	0.4	2	15	230.9114	3.020941	74.0757	32.6875	0.9006	0.0443
•	70	0.15	1	10	201.1949	3.024259	/3.9852	33.433	0.8978	0.0455
	70	0.15	1	10	212.0012	1.377059	56.6847	34.2903	0.7433	0.1029
	70	0.15	2	17	283.9075	1.397985	60.2896	33.4264	0.7605	0.0956
	70	0.15	3	18	295.2638	1.41757	56.5688	31.8388	0.7762	0.0908
	70	0.31	1	19	318.7335	1.821659	71.3911	32.744	0.8608	0.0568
	70	0.31	2	20	342.2031	1.767993	67.5699	32.1551	0.8525	0.0624
	70	0.31	3	21	365.6728	1.75863	61.8384	30.1394	0.8568	0.0635
	70	0.47	1	22	401.2559	2.111378	72.6717	32.5205	0.8909	0.0473
	70	0.47	2	23	436.839	2.249015	71.0113	31.5012	0.8849	0.0497
	70	0.47	3	24	472.422	2.203193	70.927	30.7979	0.8844	0.05
	70	0.63	1	25	520.1185	2.67983	70.6311	30.7937	0.9089	0.0397
	70	0.63	2	26	567.815	2.614385	71.5783	30.3907	0.903	0 0414
	70	0.63	3	27	615.5114	2.53843	73.3809	33.3957	0.8977	0.0435
-	70	0.79	1	28	675.3213	3.003511	77.1974	30,7505	0.9196	0.0345
-	70	0.79	2	29	735.1311	2.938096	75.5845	31.3405	0.9154	0.0370
7	70	0.79	3	30	794.9409	3.078059	75,796	32 0106	0.0104	0.0375
4	40	0.32	1	31	819.1677	1.454585	59 8533	30 0829	0.8180	0.0330
2	40	0.32	2	32	843.3945	1.48097	59 9443	32 3520	0.8102	0.0740
4	10	0.32	3	33	867.6213	1 442993	59 317	32 6005	0.0102	0.0747
2	10	0.49	1	34	904.7185	1 621904	65 2272	32 1560	0.7940	0.0000
4	10	0.49	2	35	941.8157	1 660319	64 3871	32 3502	0.0007	0.0614
4	10	0.49	3	36	978,913	1 638289	65 6546	31 02/2	0.0072	0.06
4	10	0.66	1	37	1028 881	1 855067	70 6107	37.5243	0.0001	0.0643
4	10	0.66	2	38	1078 848	1 826452	68 8360	32.4005	0.0003	0.0504
4	0	0.66	3	39	1128 816	1 821756	60.5309	31.9053	0.8807	0.0516
4	0	0.83	1	40	1191 654	2 010185	71 1605	32.0710	0.877	0.0545
4	0	0.83	2	41	1254 403	2.019103	71.1095	31.7329	0.9027	0.0438
4	0	0.83	3	42	1217 331	2.013044	74.3029	31.7346	0.8869	0.0462
4	0	1	1	13	1303 030	2.012104	73.0205	31.0523	0.898	0.0467
4	0	1	2	11	1469 749	2.2002	73.7654	30.2036	0.9142	0.038
4	0	1	2	44	1400.740	2.2202/4	73.2246	31.0708	0.9136	0.0374
1	õ	04	1	40	1044.407	2.300807	/3.148/	31.4915	0.9188	0.0356
1	ñ	0.4	1 2	40	15/4./4	1.285081	57.5078	34.6709	0.7454	0.1034
1	ñ	0.4	2	47	1605.024	1.269763	51.2285	30.7564	0.7204	0.1184
1	ñ	0.4	3	48	1635.307	1.282578	51.8962	31.6959	0.7254	0.1108
1/	0	0.55	1	49	16/6.947	1.373156	58.4486	31.6444	0.796	0.0839
4	0	0.55	2	50	1718.587	1.378104	60.3394	33.0291	0.8139	0.0789
11	0	0.55	3	51	1760.226	1.357978	60.2865	32.9742	0.7979	0.0839
10		0.7	1	52	1813.222	1.445452	64.2744	34.4958	0.8352	0.0688
1(J	0.7	2	53	1866.219	1.440244	65.4519	32.626	0.8303	0.072
1(J	0.7	3	54	1919.215	1.450059	67.8503	32.7177	0.8396	0.0644
1(J	0.85	1	55	1983.567	1.521156	65.3798	31.7728	0.8606	0.0591
10	J	0.85	2	56	2047.919	1.537496	66.4293	31.9935	0.8671	0.056
10)	0.85	3	57	2112.272	1.524244	64.7581	32.2312	0 8599	0.061
10)	1	1	58	2187.98	1.603081	71.4261	32,8702	0.8837	0.001
10)	1	2	59	2263.689	1.592607	66.5228	32.3265	0.8765	0.00
10)	1	3	60	2339.398	1.620015	66.7075	31.7473	0.8825	0.0029
						-	- · •		0.0020	0.0020

Mouse 8a Tissue

Appendix F: ARVO Abstract

The following abstract was submitted to the Association for Research in Vision and Ophthalmology, and accepted for poster presentation at the 2002 Annual Meeting, May 5-10. A travel grant was also awarded.

IMAGING OF OXYGEN TENSION IN THE MOUSE RETINA

PURPOSE

Retinal hypoxia and inadequate oxygen delivery have been implicated as causal for the development of several eye diseases, including diabetic retinopathy, glaucoma, and retinopathy of prematurity. The imaging of oxygen tension (PO₂) in the retina, generated from a measure of the phosphorescence lifetimes of bolus-injected palladium-porphyrin probes has been used successfully for nearly a decade to study retinal oxygen dynamics in the cat, miniature pig, and monkey; however, the specific parameters for applying this technique in the mouse have not been thoroughly investigated. As the number of transgenic and knockout mouse models displaying characteristics of human retinal diseases rapidly increases, an ability to image PO_2 in these very small eyes will likely be of great benefit. In this study, we investigate the refinement of a technique for generating PO_2 maps in the mouse retina using our recently constructed phosphorescence lifetime imaging system.

METHOD

To accurately measure retinal PO₂ in this animal, it was necessary to optimize a number of important acquisition parameters, including excitation power, intravascular probe concentration, camera exposure time, and camera intensifier gain settings. Measurements were made using both an in vitro calibration system and in vivo experiments in mice. Appropriate ranges for the stated parameters were determined using relationships between camera signal-to-noise values and the coefficient of determination (R^2) generated from the least-squares analysis used to produce the PO₂ maps.

RESULTS

 R^2 decreased with increasing intensifier gain (at the same signal-to-noise ratio), with the highest gain setting for the camera (255) producing unacceptable fits. Intensifier gain settings of 10 and 100 yielded R^2 values above 0.90 with exposure times of 440 ms and 43 ms, respectively. Thus, moderate intensifier gain (near 100) reduced exposure time dramatically without significantly affecting the fits. The determined ranges for these parameters are currently being applied to the in vivo experiments, where excitation power and intravascular probe concentration will also be varied to study the effects of probe excitation on mouse retinal physiology.

CONCLUSION

Determination of these parameters will allow a more efficient and effective method for creating oxygen maps in the mouse retina. Investigation of how changes in retinal oxygen tension correlate with ocular disease progression in cases where abnormalities in the delivery and consumption of oxygen are thought to be contributing factors, such as diabetic retinopathy, will then be possible.

Appendix G: Sigma Xi MS Research Award Executive Summary

The following executive summary was submitted to the Worcester Polytechnic Institute Chapter of Sigma Xi, the Scientific Research Society, in nomination for their annual MS Research Award. The project was granted the award for 2002.

Introduction and Specific Aims

Retinal hypoxia has been recognized as a causal factor in the development of numerous eye diseases, including diabetic retinopathy, retinopathy of prematurity, and glaucoma. An ability to measure oxygen tension non-invasively in the eye would significantly advance our understanding of oxygen's role in these diseases. Recently, a phosphorescence lifetime imaging technique has been developed in the laboratory of Ross Shonat for measuring oxygen tension in the eye, and has important implications for the study of retinal oxygenation in mouse models of all of these serious diseases. It will be used specifically at WPI to study diabetic retinopathy.

While the phosphorescence lifetime imaging technique has become recognized in the literature, the specific parameters for data collection and analysis in the mouse eye have not been thoroughly investigated. This goal of this project was to examine these parameters in an effort to optimize the phosphorescence lifetime imaging technique for measuring oxygen tension in the mouse retina. The specific aims for achieving the goal of optimization were:

- 5. To calibrate the phosphorescence lifetime imaging system *in vitro* using known oxygen concentrations
- 6. To determine appropriate parameters for optimal excitation of the probe, including energy and power of the excitation light
- 7. To determine optimal procedures for image collection and analysis, including camera exposure time and intensifier gain

Background

Phosphorescence lifetime imaging is the marriage of techniques in physiology, pathology, imaging, and microscopy. Understanding its application to the diabetic mouse eye requires study of the pathogenesis of diabetic retinopathy and the basics of imaging and microscopy. The following sections provide background in these areas.

Diabetes and Diabetic Retinopathy

Diabetes is a disease characterized by the body's inability to produce insulin or utilize it efficiently. There exist two forms of diabetes: type-1, also known as juvenile-onset or insulin-dependent diabetes mellitus, and type-2, also known as adult-onset or non-insulin dependent diabetes mellitus. The greatest risk for complications, including diabetic retinopathy, exists in type-1 patients. Major risk factors in complications include abnormalities in blood glucose and/or levels of insulin, usually resulting from poor glycemic control.

Diabetic retinopathy is the most common microvascular complication of diabetes. Within 20 years of developing diabetes, more than 80% of type-1 patients have some degree of retinopathy. The disease is the leading cause of blindness among Americans of working age.

Diabetic retinopathy enters its earliest clinical stage when microaneurysms begin to form. These abnormalities manifest themselves as minute bulges or outpouchings on the retinal capillaries. Increased vascular permeability follows, reflecting an alteration in the blood-retinal barrier. Fluid begins to accumulate in the retina at this stage, accompanied by hard exudates (yellow-white discrete patches of lipid that occur in rings around leaking capillaries) and cotton wool spots (areas of dense, scar-like tissue), resulting in obscured vision. Ultimately, capillary nonperfusion, ischemia, and hypoxia result.

In the proliferative stages of the disease, new blood vessels begin to grow, possibly induced by the ischemic/hypoxic state of the retina. These new vessels are fenestrated capillaries and are thus extremely fragile and prone to hemorrhage. The new vessels grow out of the retina and into the vitreous, causing vitreal scarring and shrinkage. This traction pulls on the fragile new vessels, causing retinal traction, retinal tears, vitreous hemorrhage, and retinal detachment (which results in blindness).

The pathogenesis of diabetic retinopathy is thought to be related to hypoxia. It is not completely understood whether a change in oxygen consumption causes the alterations in vascular responses to

compensate for changes in blood flow, or if the changes in blood flow cause alterations in oxygen consumption. However, it is understood that, by the time capillary closure and nonperfusion are clinically apparent, the retinal tissue is hypoxic, and the primary stimulus for neovascularization is hypoxia.

The two most common treatments for diabetic retinopathy are vitrectomy and panretinal photocoagulation. These are aimed at relieving hypoxia and slowing the neovascularization process, hopefully reducing the risk of visual loss. The treatments tend to improve oxygenation in the ischemic and hypoxic retina. Progression of diabetic retinopathy can often be prevented with good glycemic control of diabetic patients; the progress of the disease may be stopped in its very early stages if blood glucose is strictly regulated. For all forms of treatment, early detection of the disease is essential; once the cascade of prolifereative retinopathy has begun, little can be done to save the sight of the patient.

Numerous animal models, including dogs, cats, rats, and mice, have been developed for diabetic retinopathy. Mouse models for the disease have gained prominence due to the similarity between the human and mouse retinas, the relatively quick breeding time for mice, and the ease of working with these animals in a laboratory setting. The ability to study the changes in oxygen tension in these diabetic mouse eyes will likely be of great benefit to diabetic retinopathy research.

Phosphorescent Probe for Intravascular PO₂ Measurements

Light-emitting probes have received considerable attention in the literature as imaging aids. Chemicals that may be injected into the bloodstream, and that emit light when excited, have numerous implications for the study of blood vessels. Additionally, the phosphorescent probe used in this study, palladium meso-tetra porphrine, has the favorable quality of being sensitive to oxygen molecules in the bloodstream.

Phosphorescence is defined as the emission of light during a transition from an excited triplet state to the ground state. When a large number of phosphorescent molecules are excited simultaneously, the resultant total light emission can be represented by the function:

$$I(t) = I_0 \exp(-t/\tau)$$

where I(t) is the phosphorescence intensity as a function of time, I_0 is the initial, maximum intensity at t = 0, t is the time post-excitation, and τ is the lifetime of the decay.

When the phosphorescent probe is excited by light that has been sinusoidally modulated, the phosphorescence emitted will have the same frequency, but will have lower amplitude and be delayed in phase by an angle θ . θ is related to the probe lifetime by the following equation:

$\tan \theta = \omega \tau$

where ω is the excitation frequency.

A phosphorescent molecule that has been excited to the triplet state may transfer its energy to another molecule without light emission, a phenomenon termed *quenching*. Such interactions between phosphors and their environment are common; the spin-forbidden transition from the triplet state to the ground has a relatively long lifetime (on the order of ms), and increases the probability of contact between molecules. In blood, the only significant quenching agent is oxygen. The efficiency of phosphorescence quenching depends on the frequency of collision between the excited triplet state molecule and the quencher before the phosphor returns to the ground state, and is therefore dependent on the concentration of oxygen in the vicinity of the probe. This relationship is represented by the Stern-Volmer equation for an oxygen-quenched probe:

$$\tau_{\rm o} / \tau = 1 + k_{\rm Q} \tau_0 [PO_2]$$

where k_Q is the bimolecular rate constant (or quenching constant), and [PO₂] is the oxygen concentration. In a zero oxygen environment, $\tau = \tau_0$ and the lifetime is at a maximum.

Phosphorescence Lifetime Imaging of Oxygen Tension

Phosphorescence lifetime imaging requires a unique microscopic instrument (Figure 1). An illuminating beam is emitted by a xenon arc lamp, sinusoidally modulated using an optical chopper, and filtered to 524 ± 20 nm (the excitation wavelength of the phosphorescent probe used in this study) by a monochromator. The light is then reflected down into the objective by a dichromatic mirror. This light excites the phosphorescent molecules in the specimen to the triplet state, and phosphorescence is emitted

during the decay of the molecules back to their ground states. This emitted light then passes straight through the dichromatic mirror to the CCD camera, which transmits the image to the PC-based image analysis system.

Figure 1—The phosphorescence lifetime imaging system

A phase-sensitive measure of the phosphorescence lifetime in the presence of oxygen is possible when the delivered excitation light and the sensitivity of the collection system (intensifier) are independently modulated and the phase relationship between these two elements is accurately varied. Intensity images (Figure 2) may then be taken with varying intensifier phase delays, and a graph of intensity versus phase delay may be constructed. This graph may be used in conjunction with the following equation to determine the phosphorescence phase delay, θ :

$$I(\theta_{D}) = k[Pd] \{1+ m_{D}m\cos(\theta - \theta_{D})\}$$

where $I(\theta_D)$ is the intensity, k is a constant, [Pd] is the probe concentration, θ_D is the phase delay of the intensifier sensitivity, and m and m_D are parameters defined as:

$$(1+\omega^2\tau^2)^{-1/2}$$

for the excitation/emission and intensifier sinusoids, respectively. A best-fit estimate for τ may then calculated using linear regression. This value of τ may be used in the Stern-Volmer equation to calculate PO₂ maps (Figure 2).

Figure 2—Phosphorescence intensity image and PO₂ map of the mouse retina

Methods and Results

In Vitro System

An *in vitro* system was designed and constructed to calibrate the probe prior to data collection and to determine approximate gain settings and exposure times required to produce acceptable oxygen maps (Figure 3). The system includes a length of Tygon® tubing, into which a solution consisting of albumin stock solution, NaCl, glucose, and probe is injected. A peristaltic pump is used to circulate the fluid through the system. The phosphorescent solution flows through an oxygenator used to apply gas mixtures with known oxygen concentrations. Upon leaving the oxygenator, the solution then flows through a glass capillary tube situated under a microscope equipped with the phosphorescence lifetime imaging system. The phosphorescence lifetime is then measured as previously described, and a PO₂ map is generated.

Signal-to-noise ratios (SNR) were used to determine appropriate gain settings and exposure times for subsequent *in vivo* experiments. A physiological oxygen concentration of 40 mm Hg (5% oxygen applied using the oxygenator) was applied to the probe solution. Exposure times were tested at random in an attempt to achieve a maximal range of SNR for camera intensifier gain settings 10, 100, and 255. Exposure times yielding SNR of approximately 2 and approximately 225 were noted for each gain.

Figure 3—In vitro phosphorescence lifetime imaging system

Phosphoresce lifetime images were then taken at a range of ten exposure times equally spaced between the time yielding SNR ≈ 2 and the time yielding SNR ≈ 225 . R² maps, which demonstrate the integrity of the fit between the phosphorescence intensity data and the equation $I(\theta_D) = k[Pd]\{1 + m_D mcos(\theta - \theta_D)\}$, were then created. From these maps, the average R² value for the entire capillary tube was determined. These values were plotted versus SNR for each gain setting (Figure 4).

These data indicate that a gain setting of 255 does not produce images with acceptable R^2 values, regardless of the SNR. Conversely, R^2 values of greater than 0.9 were obtained with gain settings 10 and 100 for all SNR > 50. These results were verified in later experiments for a full range of physiological oxygen concentrations. As a result, all subsequent experiments were conducted at gain settings between 10 and 100. Since the data indicate that all SNR > 50 yield similarly high R^2 values, exposure times resulting in signal-to-noise ratios of 50 or less were used, thereby minimizing excitation light exposure.

The correspondence between the PO_2 values indicated by the map and those applied using the gas mixer and oxygenator was used to calibrate the system to provide accurate measures of PO_2 within the vasculature. It was discovered using the *in vitro system* that the data analysis program as it existed assigned different PO_2 values to image sets taken with different gain settings and exposure times. The identification of this problem allowed the adjustment of the program parameters and the production of accurate oxygen maps.

In Vivo System

Mice used in the study were handled according to the Institutional Animal Care and Use Committee protocols. Mice were anesthetized with an avertin/saline solution and situated in a stereotaxic

Figure 4—Average R² value versus SNR for gain settings 10, 100, and 255

head holder to prevent movement during experimentation. Mouse eyes were dilated, hydrated with an ophthalmic ointment, and shielded with a cover glass to allow observation of retinal vessels at the back of the eye. A solution of Pd meso-Tetra (4-carboxyphenyl) Porphrine probe was injected into the femoral vein in the amount of 10 mg/kg.

Gain and exposure time settings were determined *in vivo* using the *in vitro* experiments as a guide. SNR values were calculated using gain settings 10, 40, 70, and 100. Quality of oxygen maps (determined by average R^2 value) improved with SNR of up to about 15, after which quality remained constant. When ranges of exposure times yielding SNR between three and 15 were used for each gain, it was determined that exposure times of greater than one second caused damage to the retinal vessels (indicated by lack of blood flow). As such, a new range of exposure times resulting in SNR between three and 15 without exceeding one second was determined (Table 1).

Gain setting	Exposure time range (seconds)
100	0.058 - 0.402
70	0.15 - 0.79
40	0.32 - 1.0
10	0.4 - 1.0

 Table 1—Exposure times yielding a range of SNR between approximately 3 and 15, without exceeding 1.0 seconds

Experiments were also conducted with repeated exposures of 0.23 seconds at gain 100 and 1.0 seconds at gain 40. Average PO_2 was plotted versus accumulated light exposure, and it was determined that extended light exposure (greater than 1000 mJ/cm²) actually cause a decrease in vessel PO_2 . Such decreases were not observed with shorter terms of light exposure.

Conclusions

The phosphorescence lifetime imaging system may be used on the mouse eye with accurate and reliable results. Gain settings between 10 and 100 will yield acceptable intensity images and oxygen maps. Exposure times have been determined for each gain setting. Longer exposure times yield intensity images and maps of better quality—however, care must be taken not to exceed cumulative light exposure of 1000 mJ/ cm² over the course of the experiment due to the risk of retinal damage and decrease in retinal PO₂. If longer exposure times are necessary, power of excitation light must be decreased.

The phosphorescence lifetime imaging system will be used to study retinal oxygenation changes in mouse models of diabetic retinopathy. Understanding the changes in oxygenation at different stages of this serious disease may assist in developing and administering treatments and cures. The noninvasive nature of the technique makes its application to human patients a potential option. Detection of hypoxia using phosphorescence lifetime imaging may allow for early detection and treatment of diabetic retinopathy, potentially preventing blindness.

